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a b s t r a c t 

Ground Penetrating Radar (GPR) is a widely used non-destructive method in buried object detection. 

However, online, automatic, and accurate location and depth estimation methods using GPR are still un- 

der development. In this article, a cutting-edge expert system is proposed that compares signals from 

newly scanned locations to a target-free accumulated reference signal and computes a dissimilarity mea- 

sure using Dynamic Time Warping (DTW). By setting a threshold on DTW values and monitoring them 

online, a significant deviation of the DTW values from the reference signal is detected prior to reaching 

an object. A potential burial site is therefore automatically detected without having a complete GPR scan 

which is a huge advantage compared to existing methods. Following the scanning process and investi- 

gating the potential burial site, location and depth of multiple buried objects is estimated automatically 

and highly accurate. The fully-automated analytics eliminate the need of expert operators in estimating 

spatial burial locations and perform accurately even on noisy media. Statistical proofs are provided that 

support the validity of the developed expert system in theory. Moreover, the analytics run in real-time 

that is plausible for on-site applications. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Ground Penetrating Radar (GPR) is widely used in detecting

buried objects including utility lines, tree roots, caves, landmines,

grave sites, etc. ( Daniels, 2005 ). GPR transmits high frequency elec-

tromagnetic waves which can pass through soil and possibly un-

derground objects. A portion of the wave is reflected after hitting

anomalies with different electromagnetic properties from that of

surrounding soil and is received by an antenna. The signature of

buried objects in a reflected GPR signal is likely to be hyperbolic

shaped ( Benedetto & Pajewski, 2015; Pettinelli et al., 2009; Zeng &

Mc Mechan, 1997 ). Further analysis of the reflected signals leads to

buried object detection, location and depth estimation. 

Accurate depth estimation of the lateral object location depends

on two factors: the user’s judgment to peak the apex of the diffrac-

tion hyperbola and good velocity approximation of the wave in the

media. Biassed depth estimation commonly happens by operator’s

errors while making decision about the first arrival time of the

hyperbola apex and fitting the hyperbola to estimate the velocity
∗ Corresponding author. 
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 Jazayeri, Klotzsche, & Kruse, 2018; Sham & Lai, 2016 ). Indeed, deci-

ion making for noisy data or data collected over disturbed media

s more challenging. Inexperienced users can interpret the data in-

orrectly and make inaccurate decisions. Moreover, multiple buried

bjects complicate the estimation process especially when objects

re relatively close. In real-world problems, some objects produce

ery weak diffracted signals, making the signals more challenging

o interpret. Thus, the importance of this topic led us to estab-

ish an automatic method to accurately calculate the location and

epth of multiple buried targets. 

With the widespread use of machine learning algorithms to

utomate object detection process, there has been some im-

rovements in this area. For instance, utility and object detec-

ion using neural networks and pattern recognition methods ( Al-

uaimy et al., 20 0 0; Birkenfeld, 2010; Maas & Schmalzl, 2013 ).

hile Al-Nuaimy et al. (20 0 0) proposed a sophisticated near real-

ime multi-stage process to accurately identify the depth and

osition of buried targets, its execution however, is not fully-

utomated and performance depends on the quality of GPR images.

irkenfeld (2010) and Maas and Schmalzl (2013) proposed a pro-

ess to only detect presence of buried objects with high accuracy.

heir method, like other neural network systems, requires train-

ng examples in similar environments and performance depends

https://doi.org/10.1016/j.eswa.2018.12.057
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Table 1 

Material properties. 

Media Relative permittivity Electrical conductivity (mS/m) 

Soil 5 1 

PVC pipe 3 1 

Water 80 1 
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n the neural network structure. Moreover, these techniques fail

n presence of incomplete or highly disturbed profiles. 

Other machine learning driven approaches include utilizing Ge-

etic Algorithm (GA) with Support Vector Machine (SVM) classi-

er for object detection and material recognition with 80% accu-

acy ( Pasolli, Melgani, Donelli, Attoui, & De Vos, 2008 ). Automatic

etection and material classification of buried objects with 92% ac-

uracy using Support Vector Machine (SVM) after applying discrete

avelet transform (DWT) and fractional Fourier transform (FRFT)

 Lu, Pu, & Liu, 2014 ). While accuracy of theses systems is relatively

igh and their material recognition task is impressive, theses sys-

ems are not fully automatic and do not provide a depth estimation

hich is of utmost importance in real applications. 

Alternative approaches include utilization of signal processing

echniques such as wavelet and Hough transform to approximate

he top of the hyperbola ( Li et al., 2016; Qiao, Qin, Ren, & Wang,

015 ). Qiao et al. (2015) proposed a multi-stage process called

he Multiresolution Monogenic Signal Analysis (MMSA) which de-

ected targets and estimated their horizontal and vertical position

ith average 5.8 cm distance error. Their system shows premis-

ng performance but is passive and requires expert operators.

i et al. (2016) developed a system utilizing randomized Hough

ransform to detect tree roots with approximately 80% accuracy

nd a false alarm rate of less than 1.5 m. Their method performs

uite well in detecting clustered pattern of woody cellular material

ith weaker reflection signal but it does not provide depth estima-

ion and no comment is made on the running time of the process.

Most recently, a thresholding method is presented by Dou, Wei,

agee, and Cohn (2017) that utilizes a column-connection cluster-

ng to separate regions of interest from background when sharp

nd strong reflected signals are recorded. The method utilizes an

rthogonal-distance hyperbola fitting which performs reliably even

ith distorted or incomplete hyperbolic signatures. The system’s

erformance is provided only in terms of average detection rate,

-measure of 0.702, and no location/depth estimation performance

easure was provided for comparison. 

In this article, a novel automatic object detection analytic is

roposed that monitors the GPR signals for potential burial sites.

he monitoring step reduces the computation time significantly.

ollowing discovery of a potential burial site, a throughout investi-

ation of neighboring locations is conducted. The location and the

epth of the object is then estimated after automatically approxi-

ating the velocity of the media. The method is applied to numer-

us synthetic models and a real-life multiple object situation with

plendid results. 

The fully-automated decision-making process proposed in this

rticle eliminates the need of expert operators. Most importantly,

 warning is issued by the expert system when approaching a po-

ential burial site that provides a significant military application to

etect explosives ahead. Further, the spatial burial location of mul-

iple objects is accurately estimated even on challenging noisy me-

ia. 

. Materials 

Three scenarios are considered to generate synthetic data, 20

ases of each were generated to evaluate accuracy of the proposed

ethod. Scenario 1 with no buried object but noisy data. Scenario

 where a cylindrical PVC pipe with a wall thickness of 3 mm and

nner diameter of 10 cm is buried in sand, in a random location,

t a random depth. No noise has been added to the data in this

cenario. Pipes are considered to be water-filled, like most liquid-

lled utility pipes. Scenario 3 in which additive noise is added to

he data from Scenario 2 to imitate a more realistic situation. The

dditive noise is assumed to be a combination of white noise with

aussian distribution, signal to noise ratio of 25 dB, and random
utliers ( Jazayeri, Ebrahimi, & Kruse, 2017 ). The synthetic mod-

ls are created in two dimensions using the FDTD gprMax code

 Warren, Giannopoulos, & Giannakis, 2016 ). In the simulated cases,

aterials considered to be homogeneous (see Table 1 ). The trans-

itted wavelet is a ricker waveform with the central frequency of

00 MHz. The antenna offset is 14 cm and the trace interval is set

o 2.5 cm. 

Aside from synthetic models, a real case is considered where

ata collected on a main road covered with asphalt with pipes and

rainage channels underneath at unknown locations and depths.

he data is collected with a 800 MHz shielded antenna MALA

roEx system. A small portion of a GPR profile is used in this arti-

le which includes a pipe and a drainage channel. 

. Methods 

DTW algorithms align two signals in time dimension by cre-

ting a so-called “warping path” and determining a measure of

heir dissimilarity independent of certain non-linear variations

 Ratanamahatana & Keogh, 2004 ). This alignment method provides

 powerful tool in signal classification, aiming to group similar sig-

als based on their distance, and has numerous applications in au-

omated decision making ( Berndt & Clifford, 1994; Cao, Rakhilin,

ordon, Shen, & Kan, 2016; Kaczmarek & Staworko, 2009 ). 

Given two signals A = ( a 1 , . . . , a n ) and B = ( b 1 , . . . , b m 

) not nec-

ssarily with equal length, the DTW process starts by constructing

n n × m matrix in which the element of the ( i, j )th component

orresponds to the following squared Euclidian distance 

 

(
a i , b j 

)
= 

(
a i − b j 

)2 
. (1) 

The process then continues by retrieving a path through the

atrix that minimizes the total cumulative distance between the

wo signals as illustrated in Fig. 1 . Specifically, the optimal path is

ound by minimizing the warping cost given by 

T W ( A, B ) = 

√ 

K ∑ 

k =1 

d k , (2) 

here d k is the k th element of the warping path. The optimal path

s found using an iterative method. The proposed general proce-

ure to detect hidden buried objects using DTW is as follows: 

(a) Three target-free locations are scanned with GPR and the av-

erage of their signals is considered as the reference signal for

the current under investigation ground. 

(b) Proceed by scanning target areas and computing the DTW

distance of the new locations with the reference signal. The

more similar the signals are to the reference signal, the

smaller their distance value. Setting a threshold on the com-

puted sequential dissimilarity measures assists in detecting

potential burial sites. 

(c) The DTW values increase gradually by getting closer to a

site with buried objects. Finding a site where a local peak of

DTW happens and investigating the surrounding locations to

trace a hyperbola will lead to a highly probable burial loca-

tion. 

Graph of the computed dissimilarity measures for case #7 in

he three discussed scenarios along with the profiles is shown in
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Fig. 1. (a) A non-linear Dynamic Time Warp and (b) warping path between two 

signals of equal length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) GPR profiles and (b) DTW dissimilarity measures from reference signal 

for case #7 in the three experimental scenarios. 
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Fig. 2 . Obviously, target-free locations have similar signals to the

reference signal since their DTW value randomly fluctuates. Get-

ting closer to the buried object results in higher signal dissimilarity

and higher DTW value in the 2 nd and 3 rd scenarios. The increasing

pattern in DTW values are detectable even in noisy environment of

the 3rd scenario. 

In the next section, a statistical approach is developed to detect

buried objects when approaching them while keeping the detec-

tion failure error controlled. The procedure is an online sequential

control process that monitors GPR signals as they are recorded and

is capable of detecting multiple objects. 

4. Theory/calculations 

Suppose x n = 

(
x 1 n , x 

2 
n , . . . , x 

T 
n 

)
is the n th recorded GPR signal

with T as the signal length; x 1 , x 2 , and x 3 are recorded from target-

free locations and their average serves as the reference signal. Let

d n be the DTW distance of the n th recorded signal and the refer-

ence signal computed using (2) . Let d̄ 4 n represent the window aver-

age of the last 4 DTW values given by 

d̄ 4 n = 

1 

4 

n ∑ 

i = n −3 

d i , (3)

and d̄ 25 
n represent the window average of the last 25 DTW values

given by 

d̄ 25 
n = 

1 

25 

n ∑ 

i = n −24 

d i , (4)
d  
here the window average of 25 is computed for the available val-

es at the beginning of the process and is shown by d̄ n n . 

emma 1. As soon as the nth signal is recorded, the following deci-

ion boundary detects underground objects with probability 0.999 for

 ≥ 25 : 

 ̄

4 
n > d̄ 25 

n + u 

25 
n , (5)

where 

 

25 
n = t ( 24 , 0 . 999 ) s 

25 
n 

(
21 

25 

2 

)(
1 + 

21 

4 

2 

)
. (6)

For 4 ≤ n ≤ 24, the following boundary detects underground objects

ith the same probability: 

 ̄

4 
n > d̄ n n + u 

n 
n , (7)
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Table 2 

Mean Absolute Error (cm) and Root Mean Square Error (cm) of the 

DTW analytics in 20 simulated cases for two scenarios. 

Scenario Location Depth 

Detection MAE RMSE MAE RMSE 

Scenario 2 104.85 0.474 0.725 1.872 2.351 

Scenario 3 104.35 0.600 1.432 2.258 2.723 
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Fig. 3. DTW dissimilarity measure and sequential confidence intervals for case #7 

in the three experimental scenarios, (a) Scenario 1, (b) Scenario 2, (c) Scenario 3. 

i  

p  

f  

1  

A  

l  

s  
where 

 

n 
n = t ( n −1 , 0 . 999 ) s 

n 
n 

(
n − 4 

n 

2 

)(
1 + 

n − 4 

n 

2 

)
. (8)

The proof of the lemma is provided in the appendix. The com-

utational steps to utilize the lemma are as follows: 

1. When x n ( n ≥ 4) is recorded and the surface reflection is re-

moved, its DTW distance from the reference signal is computed

along with the window average of four 
(
d̄ 4 n 

)
and the window

average of 25 ( ̄d 25 
n or d̄ n n when applicable). 

2. A one-sided t -student confidence interval (0 , d̄ 25 
n + u 25 

n ) is gen-

erated using (6) . When there are less than 25 observations this

interval is size dependent and is computed as (0 , d̄ n n + u n n ) us-

ing (8) . 

3. If d̄ 4 n ≤ d̄ 25 
n + u 25 

n (or d̄ 4 n ≤ d̄ n n + u n n when applicable) then pro-

cess is under control and the chance of failure in detection is

α = 0 . 001 . Otherwise, a warning is generated and an object un-

derground is detected ahead. In this case, values of d̄ 4 keeps

increasing by approaching the buried object. 

4. Scanning target areas and monitoring continues until a local

peak of d̄ 4 is observed. This peak happens in the vicinity of a

highly probable burial site, x n ( a ≤ n ≤ b ). 

5. A hyperbola is tracked and mapped for signals of the proba-

ble burial site through analytic searching. The location of the

buried object is estimated as the apex of the hyperbola curve. 

6. A least-square approach is used to approximate the velocity us-

ing the marked nodes on the diffracted hyperbola in step 5.

Then, the one-way travel time of the wave at the estimated lo-

cation of the target is multiplied by the velocity to estimate the

depth. A zero-time correction is applied beforehand where the

zero-time is estimated using the potential burial site signals. 

7. The process is repeated for all the local peaks of d̄ 4 for detect-

ing multiple objects. 

. Results 

The results of the proposed decision analytics for case #7 in

he three discussed scenarios is illustrated in Fig. 3 . Due to limited

pace, it is not possible to include all cases, however all the re-

ults are available as supplementary materials. In the 1 st Scenario

here there was nothing underground, the confidence limit ran-

omly fluctuates with no increasing pattern. There are some values

utside the confidence limit but that does not change the pattern

f the upper interval. In the 2 nd Scenario however, the confidence

imit increases due to severe dissimilarity of the new signals from

he reference signal. A warning message generated at x = 0 . 995 m

nd the burial location estimated as x = 2 . 17 m. The burial depth

s approximated as 0.3497 m underground. The true location of the

bject was 2.17 m, 0.350 m underground, i.e. < 0.08% error in depth

stimation and exact predicted location. In the 3rd Scenario, an in-

reasing pattern for the confidence bound is observed as well. A

arning is issued at x = 1 . 37 , the buried object estimated to be at

 = 2 . 17 , 0.363 m underground; ∼ 3.7% error in depth due to ad-

itive noise and random outliers. 

The performance of the proposed method in 20 simulated ex-

eriments of Scenarios 2 and 3 is presented in Table 2 . All 20 cases
n 1st scenario were successfully marked “clear site” using the pro-

osed approach, while all the cases in Scenario 2 and 3 warned

or a burial site. On average, the warning message was generated

.05 m prior to reaching the object in the 2nd scenario. The Mean

bsolute Error (MAE) and Root Mean Squared Error (RMSE) of the

ocation estimation for the 2nd scenario was 0.47 and 0.73 cm, re-

pectively; meaning that on average the locations were estimated
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Fig. 4. (a) A real GPR experimental profile (b) DTW warning and estimated loca- 

tions. 
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viewers for their constructive comments. 

1 AbolfazlSaghafi.info/research. 
with 0.47 cm error; RMSE reflects both bias and variation in es-

timations. The depth estimation was accurate as well, with 1.872

and 2.351 cm for MAE and RMSE, respectively. For cases in the 3rd

scenario, on average the proposed analytics could detect a buried

object from 1.04 m away. The MAE and RMSE in these scenarios

were 0.60 and 1.43 cm for location; 2.26 and 2.72 for depth esti-

mation, respectively. 

The outcome of DTW approach on the real case scenario is il-

lustrated in Fig. 4 . As the GPR profile shows, there are random

noises and distortions in the GPR signal that scramble the signal

in many locations, making it difficult for many methods to per-

form adequately. However, the DTW process performs exemplary

by estimating the location of multiple objects as x = 2 . 007 and

x = 5 . 447 , respectively 0.541 and 0.779 m underground. The ex-

act locations and depths in this real experiment are unknown but

the results match expert expectations. The complex reflection sur-

rounding the second object may be created by a combination of

two closely-spaced utilities; the sharp local peak of the DTW plot

at 4.9 m may be created by the first following by the second and

wider object (drainage channel) which is detected by the analytics

as a definite target. Here, the analytics pick on the local max of

the smoothed DTW values happening at 4.90 and track the trace

of the hyperbola using a custom window search to reach its peak. 

The method proposed in this paper, presented complete suc-

cess in detecting the subsurface anomalies in all studied cases of

synthetic and real data. To our experience, even the most recent

detection method proposed by Dou et al. (2017) , fails to locate the
rainage channel at 5 m in Fig. 4 (a) while the proposed method

uccessfully detects the object and performs valid depth estimation

sing imperfect hyperbolic signatures. Moreover, the presented sta-

istical measures of estimation accuracy provide a reliable compar-

son tool for alternate approaches. 

. Conclusions and discussion 

In this article, a statistical monitoring scheme is introduced that

easures dissimilarity of GPR signals to signals from target-free lo-

ations to automatically detect multiple hidden buried objects and

stimate their location as well as depth. The computations are per-

ormed in real-time. All the synthetic and real data used to gener-

te the results are accessible via the corresponding authors’ per-

onal webpage. 1 Statistical proof provided in the appendix vali-

ates the effectiveness of the proposed analytics. 

An alarm is generated to warn the user when a potential burial

ite is detected ahead by setting a threshold on the values of the

issimilarity measure. This provides a huge advantage over alter-

ate techniques which require full GPR information to detect burial

ites. The threshold was set using a t -student distribution. Sensi-

ivity of the alarm generation could be controlled by changing the

ritical value α, default value is set to 0.001. 

Although we used the average of three target-free locations as

he reference signal, more samples could be used to generate the

eference; less than two is not recommended. In addition, we have

tilized an average window of four DTW’s for checking in/out of

ontrol states since four samples cut the length of the interval in

alf. A window average of 25 DTW’s has been utilized to create

onfidence limits using t -distribution following Central Limit The-

rem. Investigations could be made to determine probable more

uitable window sizes. 

The proposed system is not entirely flawless and can be im-

roved. Different settings in synthetic and real-life situations on

yperbola mapping are used to achieve accurate results. This sug-

ests possibly new settings for different GPR devices for reliable

mplementation. Moreover, the depth estimation in the proposed

ystem depends on the soil velocity approximation. A custom hy-

erbola search and mapping is used in the analytics to approx-

mate velocity by computing signal’s travel time. While this ap-

roach performed well on all our synthetic and real-life data, it

till could be improved. Looking into alternate techniques to ap-

roximate soil velocity and an even better hyperbola mapping

echnique is a possible future development. 

A prominent future research is accurately pinpointing spatial

ocation of objects that are buried in close proximity, e.g. in de-

ecting reinforcement steel bars. In this case, the hyperbolas inter-

ene which make their mapping challenging. However, one can use

ooled information from multiple objects buried at the same depth

o make an even more reliable depth estimation. Furthermore, our

nalytics require full GPR profile to make a reliable depth estima-

ion. One potential future development is to use the symmetry of

yperbola and mathematical modeling to reduce the amount of in-

ormation required for depth estimation. In addition, an expert 2D

ecision-making process could be developed that utilizes the pro-

osed analytics to search an area for potential buried objects while

reating a 2D map of the DWT values. Eventually the searching

rocess could be automatized completely with a proper decision

ircuit. 
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ppendix A. Proof of Lemma 1 

The proof is provided for n ≥ 25 while steps are similar for

 ≤ n ≤ 24. Under the hypothesis that there is nothing underground,

he window average of 25 and 4 have the same expected value,

hat is: 

 

(
D̄ 

4 
n 

)
= μ4 = μ25 = E 

(
D̄ 

25 
n 

)
, 

here μ4 is the true mean of the window average of 4 DTW dis-

ance values and μ25 is the true mean of the window average of

5 DTW distance values. However, by approaching target-locations,

he window average of 4 increases promptly while the window av-

rage of 25 increases gradually. To detect this change as quickly as

ossible, we are testing the following statistical hypothesis at each

tep of the process: 

 0 : μ
4 = μ25 V s H 1 : μ

4 > μ25 , 

he test statistic is ( ̄D 

4 
n − D̄ 

25 
n ), which is unbiased under null-

ypothesis: 

 

(
D̄ 

4 
n − D̄ 

25 
n 

)
= 0 , 

nd has the following variance 

 ar 
(
D̄ 

4 
n − D̄ 

25 
n 

)
= σ 2 

(
21 

25 

2 

)(
1 + 

21 

4 

2 

)
, 

here V ar 
(
D̄ 

n 
n 

)
= σ 2 /n . Thus, using Central Limit Theorem, one

oncludes (
D̄ 

4 
n − D̄ 

25 
n 

)
σ 2 

(
21 

25 2 

)(
1 + 

21 
4 2 

) ≈ N ( 0 , 1 ) . 

y estimating σ 2 using the last 25 observations, we have (
D̄ 

4 
n − D̄ 

25 
n 

)
s 25 

n 

(
21 

25 2 

)(
1 + 

21 
4 2 

) ≈ t (24) , 

here 

 

25 
n = 

√ 

1 

24 

n ∑ 

i = n −24 

(
D i − D̄ 

25 
n 

)2 
. 

hus, an α-level rejection region for testing H 0 against H 1 will be 

D̄ 

4 
n − D̄ 

25 
n 

)
> t (24 , α) s 

25 
n 

(
21 

25 

2 

)(
1 + 

21 

4 

2 

)
. 

herefore, using a t -distribution confidence interval, a buried ob-

ect is detected when 

(
d̄ 4 n − d̄ 25 

n 

)
> u 25 

n , where 

 

25 
n = t ( 24 ,α) s 

25 
n 

(
21 

25 

2 

)(
1 + 

21 

4 

2 

)
, 

s long as 
(
d̄ 4 n − d̄ 25 

n 

)
≤ u 25 

n , the process is under control and the

robability of not detecting a change equals α which is related to

he selected t -distribution critical value and controls the sensitivity

f the test. 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.eswa.2018.12.057 . 
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