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ABSTRACT

Ground-penetrating radar (GPR) is a widely used tool for
the detection and location of buried utilities. Buried pipes
generate characteristic diffraction hyperbolas in raw GPR
data. Current methods for analyzing the shapes and timing
of the diffraction hyperbolas are very effective for locating
pipes, but they are less effective for determining the diameter
of the pipes, particularly when the pipes are smaller than the
radar wavelengths, typically a few tens of centimeters. A
full-waveform inversion (FWI) method is described for im-
proving estimates of the diameter of a pipe and confirming
the infilling material (air/water/etc.) for the simple case of an
isolated diffraction hyperbola on a profile run perpendicular
to a pipe with antennas in broadside mode (parallel to the
pipe). The technique described here can improve a good ini-
tial guess of the pipe diameter (within 30%–50% of the true
value) to a better estimate (less than approximately 8% mis-
fit). This method is developed by combining two freely
available software packages with a deconvolution method
for GPR effective source wavelet estimation. The FWI proc-
ess is run with the PEST algorithm (model-independent
parameter estimation and uncertainty analysis). PEST itera-
tively calls the gprMax software package for forward mod-
eling of the GPR signal as the model for the pipe and
surrounding soil is refined.

INTRODUCTION

Modern life depends on subsurface pipelines used to carry water,
oil, gas, sewage, and other fluids. Civil engineering and construc-
tion industries face the challenge of maintaining and repairing
existing pipelines as well as laying new pipes. Increasing demand

for new buried utilities increases the risk of damaging existing util-
ities (Lester and Bernold, 2007). As infrastructure ages, the demand
for repairs and replacement requires knowledge of the locations and
connectivities of multiple utility systems installed at different times,
using different materials, in increasingly dense networks, in which
records are often incomplete. In such scenarios, simply detecting a
pipe at a given location may not be sufficient information. Ground-
penetrating radar (GPR) resolution of not only the presence of
the pipe but also the pipe diameter, pipe material, or pipe-filling
material (e.g., air, water) could be a way to distinguish and map
different generations or types of utilities.
GPR has become one of the primary tools of choice for mapping

the locations of pipes in urban settings. The transmitting antenna
emits an electromagnetic (EM) pulse that propagates into the sub-
surface. The EM pulse travels through the subsurface material, and
it is reflected, scattered, and attenuated. The reflection or scattering
occurs when the pulse encounters a subsurface inhomogeneity, in
particular, soil heterogeneities or targets with contrasting dielectric
properties (permittivity). (We note that the permittivity here is ex-
pressed as relative permittivity, which is the ratio of the material
permittivity to the permittivity of free space.) The pulse attenuation
is primarily controlled by the electrical conductivity of the soil.
Reflected energy is recorded by the receiving antenna. The signal
recorded at the receiving antenna contains a combination of the en-
ergy traveling in air and along the ground surface, reflected and
refracted energy from soil inhomogeneities, buried targets (in this
case, pipes), and noise. A buried pipe generates a characteristic
diffraction hyperbola because of its shape and contrast in EM prop-
erties with the background soil. The diffraction hyperbolas of pipes
in GPR profiles are sufficiently distinctive that they can be dis-
played and interpreted in real time; hence, GPR is widely used
for on-the-spot utility detection.
GPR responses expected from underground utilities, drums,

tanks, and cables have been described in the literature. Early mod-
eling by Zeng and McMechan (1997) describes responses for a va-
riety of utility scenarios, with air-filled, water-filled, and partially
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saturated pipes. Maierhofer et al. (2010) provide a workflow for the
typical common-offset GPR data analysis procedures as well as
modeling and imaging techniques common to rebar detection.
Benedetto and Pajewski (2015) describe examples of GPR surveys
in civil engineering, including pavement, bridges, tunnels and
buildings, underground utilities, and voids.
The horizontal position of an underground pipe on a GPR profile

is readily established as the location of the peak of the characteristic
diffraction hyperbola (Figure 1). Inferring the depth to the top of the
pipe requires knowledge of the average velocity structure of mate-
rials over the pipe. Loeffler and Bano (2004) study the impact of
water content on the permittivity and therefore on GPR signals by
simulations of cylindrical objects in the vadose zone. One way to
derive the propagation velocity in the medium is by conducting a
common-midpoint (CMP) or wide-angle reflection and refraction
(WARR) survey, in which the spacing between the transmitter
and receiver is progressively increased. Following methods derived
for stacking seismic data, layer velocities can be determined by
semblance analysis (Fisher et al., 1992; Grandjean et al., 2000;
Liu and Sato, 2014; Liu et al., 2014). This method has the advantage
of recovering information on how velocity varies with depth, but it
requires surveys with systems that permit a variable offset between
transmitter and receiver. Urban surveys require shielded antennas
(to avoid reflections from surficial objects); most shielded systems
cover a transmitter-receiver pair in a single shielded unit that does
not lend itself to easy acquisition of CMP surveys. Alternatively, an
average velocity can be determined from the shape and timing of the
diffraction hyperbola that forms the GPR return from the pipe itself.
So, in general, the pipe depth is estimated by finding the average
velocity that best fits the measured hyperbola. However, Sham and
Lai (2016) observe that the curve-fitting method is biased by human
judgment. Grandjean et al. (2000), Booth et al. (2011), and Murray
et al. (2007) describe the accuracy with which velocities, and hence
depths of utilities, can be determined via both methods.
In this paper, we focus on how to extract additional information

about pipes, beyond position and depth, from GPR profiles. The

pipe diameter affects GPR returns, most visibly when the radar
wavelength is small compared with the pipe diameter and the pipe’s
permittivity is significantly different from the surrounding soil
(Roberts and Daniels, 1996). In this case, distinct returns can be
captured from the top and bottom of the pipe, as shown in Figure 1
(e.g., Zeng and McMechan, 1997). It is easier to capture the dimen-
sions of water-filled pipes than air-filled pipes because the slow ra-
dar velocity in water delays the return from the bottom of the pipe
by a factor of approximately nine over the equivalent air delay. In
either case, when the pipe is narrow enough that the top and bottom
returns overlap and interfere, extracting information on pipe diam-
eter from the single hyperbola is challenging. Wiwatrojanagul et al.
(2017) report no significant difference for the hyperbolic reflections
for different rebar diameters. Diameter estimation based on fitting
hyperbolas is clearly impacted by decisions about the phase of the
pipe return selected for the fit (because one can choose either pos-
itive or negative phases; see Dou et al., 2017) and trade-offs made in
wave velocity and pipe diameter selections. The hyperbola-fitting
method also cannot provide any information about the pipe-filling
material.
Ristic et al. (2009) present a method to estimate the radius of a

cylindrical object and the wave propagation velocity from GPR data
simultaneously based on the hyperbola fitting. In their method, the
target radius is estimated by extracting the location of the apex of
the hyperbola and the soil velocity that best fits the data for a point
reflector, followed by finding an optimal soil velocity and target
radius, using a nonlinear least-squares fitting procedure. This
method is handicapped because the variability in the GPR source
wavelet (SW) and local complexities in the soil’s permittivity
and conductivity structure affect the shape of the returned pulse.
This in turn affects how the arrival times of diffracted returns
are defined. These perturbations to the arrival time can be on the
order of the changes expected with the changing cylinder diameter,
making it difficult to distinguish the pipe diameter from the wavelet
from the permittivity and conductivity complexities.
Other researchers have also investigated the complexities associ-

ated with pipe returns. For example, GPR can be applied for leakage
detection from the pipes. Crocco et al. (2009) and Demirci et al.
(2012) successfully detect water leakage from plastic pipes using
GPR by applying microwave tomographic inversion and a back-
projection algorithm, respectively. Ni et al. (2010) use a discrete
wavelet transform (DWT) to filter and enhance GPR raw data to
improve image quality. They find DWT to be advantageous in
the detection of deeper pipes if shallower anomalies obscure the
reflected signal from deeper targets, but they do not attempt to ex-
tract pipe diameter information. Janning et al. (2014) present an ap-
proach for hyperbola recognition and pipe localization in
radargrams, which use an iterative-directed shape-based clustering
algorithm to recognize hyperbolas and identify groups of hyperbola
reflections that belong to a single buried pipe.
Full-waveform inversion (FWI) can potentially provide high-

resolution subsurface images because it uses information from the
entire waveform. If achieved, FWI can improve on estimates of pipe
diameter made from ray-based arrival time analysis, as in Ristic et al.
(2009). Virieux and Operto (2009) provide an overview of the de-
velopment of this technique for seismic data. FWI on GPR data is
most commonly applied on crosshole GPR data to study aquifer
material (e.g., Ernst et al., 2007; Klotzsche et al., 2010, 2012, 2013,
2014; Meles et al., 2010, 2012; Yang et al., 2013; Gueting et al.,

Figure 1. A synthetic GPR profile for an air-filled PVC pipe. The
inner diameter of the pipe is 40 cm with a wall thickness of 3 mm;
the central frequency of the antenna is 800 MHz. In this case, dis-
tinct reflections from the top and bottom of pipe are observed; later,
weaker arrivals are multiples.
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2015, 2017; van der Kruk et al., 2015; Keskinen et al., 2017) or on
frequency-domain air-launched GPR signals for a limited number
of model parameters (Lambot et al., 2004; Tran et al., 2014; André
et al., 2015; De Coster et al., 2016; Mahmoudzadeh Ardakani et al.,
2016). Lavoué et al. (2014) use frequency domain FWI to image 2D
subsurface electrical structures on multioffset GPR data. Kaloger-
opoulos et al. (2011) use FWI on surface GPR data to monitor chlo-
ride and moisture content in media. Busch et al. (2012, 2014) apply
FWI on surface GPR data to characterize soil structure and to obtain
conductivity and permittivity estimations. Busch et al. (2013)
further apply FWI on surface GPR data to estimate hydraulic prop-
erties of a layered subsurface.
The method described in this paper builds on the previous work

by applying the FWI method to the problem of pipe diameter and
infilling material estimation. Multiple variables
that influence the GPR diffraction hyperbola
can be incorporated into the inversion process.
Here, the method is assessed when the SW, aver-
age soil permittivity, pipe depth and horizontal
position, pipe inner diameter, and pipe-filling
material are optimized in the inversion. The
method in its current state is only effective with
diffraction(s) from one pipe, and it does not yet
share the advantages of Ni et al. (2010) and
Janning et al. (2014) methods that can distin-
guish multiple pipes.
We note that we are considering only an ex-

ceptionally simple case that provides a starting
point for more thorough investigations. We only
consider transects run perpendicular to a horizon-
tal pipe with antennas in broadside mode (main-
tained parallel to the pipe and perpendicular to
the transect). Polarization effects on surveys
oblique to pipes will be quite different (e.g., Vil-
lela and Romo, 2013).

METHOD

The method presented here for determining a
best-fitting pipe diameter and other parameters
involves five main steps (Figure 2): (1) basic
processing of the raw GPR data, (2) defining
the starting model using the ray-based diffraction
hyperbola analysis, (3) transformation of 3D data
to 2D, (4) finding a good effective SW, and (5) an
iterative inversion process that runs to a threshold
criteria to find the pipe diameter that best fits
the data. The starting model created in step 2
is defined using ray-based analysis of the data,
whereby the average soil velocity and therefore
electrical permittivity, soil electrical conduc-
tivity, pipe lateral location, and depth are esti-
mated. In this workflow, the user must assume
a permittivity of the pipe-filling material (e.g.,
a value expected for air, water, or sewage) and
the pipe material (e.g., PVC) and pipe wall thick-
ness. With these assumptions, a value for the
electrical conductivity within the pipe and a start-
ing estimate of the pipe diameter are also derived.

The inversion procedure in step 5 requires forward modeling of
GPR wave propagation. Because forward modeling of 3D waves is
computationally expensive, 2D forward modeling is used. This re-
quires a 3D to 2D transformation on the data, accounting for the
expected differences between the real source and a line source,
and correcting the geometric spreading factor.
We note that the goals of the method described here are to im-

prove the initial estimates of pipe diameter and pipe-filling material
and soil permittivity. Estimating the conductivity of the pipe-filling
material (or soil) would require further computational expense, in
the form of updating the SW estimation (step 4) at each iteration of
the inversion process in step 5. Here, the conductivity values are
estimated from ray theory and then fixed during the inversion proc-
ess. To eliminate errors caused by inaccurate conductivity values,

Figure 2. The inversion process flowchart. The critical steps prior to the PEST full
waveform inversion (gray box) are (1) simple GPR data processing, (2) ray-based analy-
sis to estimate the initial model, (3) 3D to 2D transformation, (4) source-wavelet cor-
rection(s); and (5) creation of a reasonably good initial model using the ray-based results
and the estimated SW, starting the inversion.
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traces are individually normalized before misfit calculations in the
inversion process. The pipe wall thickness estimate is also fixed in
the inversion process, as typical values of a few mm put it below the
GPR signal resolution.

1) Basic processing of raw GPR data: Some initial processing of
the GPR data is essential for the inversion process to work (see
Figure 2, step 1). A standard dewow filter and time-zero
corrections (e.g., Cassidy, 2009) are followed by a high-cut fre-
quency filter (2 GHz for examples in this paper). High-
frequency noise removal is important because the forward
models generated during the inversion process (described be-
low, Figure 3) simulate “clean” data without such noise. In prac-
tice, additional data smoothing in the x and y (space and time)
dimensions is found to help the inversion efficiency. The opti-
mal window size for the xy filter appears to vary with individual
data sets, and selection depends on the interpreter’s experience.
The combined effects of these processing steps on the signal
amplitude, for all data presented here, are on average less than
1% through the traces. On the two noisiest traces, the average
amplitude change is 4%. The data are not gained.

2) Defining the starting model using ray-based diffraction hyper-
bola analysis: The FWI and the effective SW estimation are
impossible without a good initial model. We use ray-based
analysis to estimate the initial parameters (Figure 2, step 2).
First, traveltimes of the peak amplitudes of the diffraction hy-
perbola (from the top of pipe, if two are observed) are identified.
Second, Radzevicius (2015)’s least-squares method is then used
to estimate the average soil velocity, pipe depth, and lateral po-
sition that best fits the peak amplitude times, assuming the pipe
to be a point diffractor and zero offset between antennas. If two
distinct hyperbolas from the pipe top and pipe bottom are rec-
ognized, then the diameter is estimated from the rms average of
the traveltime differences Δt for the peak amplitudes of returns
from the pipe top and pipe bottom on traces in the diffraction
hyperbola, where diameter ¼ ðvfilling∕2ÞΔtrms and vfilling is the
velocity assumed for the pipe-filling material. The interpreter
can assume the pipe to be water or air filled to estimate vfilling.
If the resulting diameter appears unreasonable, an alternative
filling medium can be considered (for most engineering utility
scenarios, if distinct reflections from the top and bottom of the
pipe are recorded with 800 MHz antennas, it is likely that the
pipes are water filled). For instance, a 10 cm diameter water-
filled pipe generates almost the same time interval between
the hyperbolas off the pipe top and pipe bottom as a 90 cm
diameter air-filled pipe. If no hyperbola from the pipe bottom
can be recognized, interpreters must rely on their best guesses
for the initial diameter based on knowledge of the site.
An average soil conductivity is estimated by a least-squares
approach described in Appendix A. The maximum absolute am-
plitudes on the recorded hyperbola from the top of the pipe are
used to find the best conductivity model that fits the data.
With isolated, clear diffraction hyperbolas and some knowledge
about the expected target properties, it is possible to make suf-
ficiently good starting models that the inversion can proceed
successfully. Meles et al. (2012) indicate that successful inver-
sion requires initial models return synthetic data pulses that are
offset less than one-half wavelength from the measured traces.
Ray-based analysis is critical for satisfying this criterion.

3) 3D to 2D transformation: To simulate 2D line-source generated
waveforms that would be equivalent to those observed in the 3D
data, a transformation is applied to the data (see Figure 2,
step 3). This transformation is a prerequisite for the application
of the 2D forward modeling in the inversion process, as noted
for example by Ernst et al. (2007), Klotzsche et al. (2010, 2013),
and Meles et al. (2012). We follow the method developed by
Forbriger et al. (2014) to transform 3D shallow seismic data to
2D. Their method convolves data in the time domain with affiffiffiffiffiffi
t−1

p
, where t is the traveltime, followed by an amplitude cor-

rection. The convolution provides a π∕4 phase shift and corrects
the geometric spreading difference between two and three
dimensions.

4) SW estimation: The effective SW needs to be estimated once
data are transformed to two dimensions (Figure 2, step 4).
The shape and the amplitude of the SW depend on the instru-
ment used, ground coupling, and the surficial soil permittivity
and conductivity structure. As such, the user has little control
over the wavelet form while collecting data. However, a good
effective SW estimation is critical for the success of the inver-
sion (inversion runs without the wavelet estimation step yield
markedly poorer results or fail to converge). Ernst et al. (2007)
and Klotzsche et al. (2010) propose a deconvolution approach
to correct an initial estimate of an effective SW, for crosshole
GPR data. An improved SW is obtained by deconvolving radar
data with the impulse response of the earth in the area of inves-
tigation (Ernst et al., 2007; Klotzsche et al., 2010; Kalogeropou-
los et al., 2011). We adapt this deconvolution approach for the
use of common-offset data. The deconvolution is applied with
the ray-based model and the observed data to correct the SW,
and the process is then repeated a second time to yield a second
corrected SW. Details of the procedure are described in Klotz-
sche et al. (2010).
The method requires an initial guess of the waveform. For the
instrument and terrain conditions in the case studies presented
here (a Mala Geosciences ProEx 800 MHz shielded antenna on
partially saturated clean sands), we find that the fourth deriva-
tive of a Gaussian wavelet (second derivative of a Ricker wave-
let) is effective. The efficiency of the FWI method is found to be
highly dependent on the availability of an accurately corrected
SW. The recovered SW is in turn dependent on the starting
model (impulse response) of soil and pipe properties, and on
the number of data traces and time window within traces used
in the wavelet correction. Errors in the starting model propagate
into the effective SW, and errors in the amplitude of the SW in
particular can trade-off with errors in the conductivity model.
Because the conductivity estimations in the FWI approach are
highly dependent on the SW, a successful FWI analysis that
aims to estimate the conductivity values requires the SW to
be updated at each iteration of the FWI process. Busch et al.
(2012, 2014) extend the deconvolution approach for surface
WARR GPR data and combine it with a frequency-domain
FWI for a horizontally layered media that better describes
the sensitivity of the SW estimation to subsurface parameters.
Thereby, Busch et al. (2012, 2014) combine the FWI and an
effective SW update in terms of medium parameters and wave-
let phase and amplitude. In contrast to common-offset data,
WARR data provide more information about amplitude decay
with changing offset and allow a better conductivity estimation.
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Adapting this approach to common-offset data is beyond the
scope of this paper, and we thus expect errors associated with
the SW amplitude estimation and the conductivities in the in-
version process. We recognize this limitation in the method
by eliminating soil conductivity as an inversion parameter (it
remains fixed at the initial value), and reducing the impact
of the soil conductivity on the inversion process by normalizing
traces individually when calculating the cost (objective) func-
tions at each inversion step.

5) FWI: As the fifth and final step, the GPR returns from the pipe
are inverted to improve on the initial model of soil and pipe.
In this paper, the inversion procedure is designed using two
software packages that are freely available. The first, the PEST
(model-independent parameter estimation and uncertainty
analysis) package (Doherty, 2017), is used for inverting the data
to find the best model parameters (Doherty, 2015). The second,
gprMax 2D (Giannopoulos, 2005; Warren et al., 2016), is used
to compute the GPR readings expected at each step as the model
parameters are updated (Jazayeri and Kruse, 2016). Because
small cell sizes are necessary for the inversion to accurately re-
cover the pipe dimensions, a 3D forward model, although
clearly preferable, was too computationally expensive for this
study.

PEST, prepared by John Doherty and released in 1994, is a pack-
age developed for groundwater and surface-water studies (Doherty,
2017), but it can be linked to any forward-modeling problem. PEST
uses the Gauss-Marquardt-Levenberg nonlinear estimation method
(Doherty, 2010, 2015).
The relationship between the model parameters (e.g., pipe radius

and soil permittivity) and the model-generated observation data
(GPR returns) is represented by the model function M that maps
the n-dimensional parameter space into m-dimensional space,
where m is the number of observational data points d. The term
M should be differentiable with respect to all model parameters
(Doherty, 2010). A set of parameters, p0 thus generate the model
observations d0 (equation 1). Although generating another set of
data d from a p vector slightly different from p0, the Taylor expan-
sion provides equation 2 as an approximation, where J is the Ms
Jacobian matrix:

d0 ¼ Mðp0Þ; (1)

d ¼ d0 þ Jðp − p0Þ: (2)

The best fitting model is the one that produces the minimum of
the cost function φ (equation 3), where d is the real data collected
and Q is an m ×m diagonal weights matrix:

φ ¼ ðd − d0 − Jðp − p0ÞÞTQðd − d0 − Jðp − p0ÞÞ: (3)

If u is denoted as the parameter upgrade vector, u ¼ p − p0, it
can be written as

u ¼ ðJTQJÞ−1JTQR; (4)

where R is the nonnormalized vector of residuals for the parameter
set, R ¼ d − d0.

This approach needs to be given a set of starting model param-
eters (p0), which will be updated to find the global minimum of the
cost function (φ) in the time domain. The optimization process can
benefit from adjusting equation 4 by adding a Marquardt parameter
(α). The new form of the upgrade vector can be rewritten as equa-
tion 5, where I is the n × n identity matrix:

u ¼ ðJTQJþ αIÞ−1JTQR: (5)

For problems with parameters with greatly different magnitudes,
terms in the Jacobian matrix can be vastly different in magnitude.
The round-off errors associated with this issue can be eliminated
through the use of an n × n diagonal scaling matrix S. The ith
element of the scaling matrix is defined as

Sii ¼ ðJTQJÞ−1∕2ii : (6)

Finally, equation 6 can be rewritten as

S−1u ¼ ððJSÞTQJSþ αSTSÞ−1ðJSÞTQR: (7)

The largest element of αSTS is often denoted as the Marquardt
Lambda (λ), and it can be specified to help control the parameter
upgrade vector u and optimize the upgrade process.
To start the inversion, PEST makes an initial call to gprMax to

compute the initial GPR data set expected from the starting model
p0 with the corrected SW (Figure 2, step 5). The Marquardt λ value
is set to 20, and PEST computes the initial cost function φ. Then, a
lower λ value is set and the cost function is recalculated. This proc-
ess is repeated until a minimum cost function is found. If a lower
cost function is not observed by λ reduction, a higher lambda will be
tested. Parameters p are then updated using the λ value that yields
the minimum cost function, and the next iterations starts, with
gprMax called again from PEST to compute the new corresponding
GPR readings d0. PEST then computes the residuals R between the
updated model and real data. The next iteration starts with the best
Marquardt λ from the previous iteration. If, in the next iteration, a
lower cost function is not achieved, a new vector of updated param-
eters will nevertheless be tested. This process continues until the
step at which a lower cost function is not found after N iterations.
The N in this process was set to six. The user can also specify upper
and lower bounds for the parameters p. In this study, the relative
permittivity is restricted between 1 and 90, and pipe diameters
are bounded between 0 and 20 cm.
A concern in any inversion process is that the algorithm leads to a

local minimum rather than the global minimum solution. For the
real data, we cannot unambiguously identify the global minimum.
To avoid local minima trapping, we follow, to the extent possible,
the recommendation described above that the initial synthetic data
set is offset less than a half wavelength from the measured data (e.g.,
Meles et al., 2012; Klotzsche et al., 2014). Then to qualitatively
assess the likelihood that our results presented represent a local min-
imum, we run the inversion process with multiple sets of initial
model parameters p0, and compute the cost function φ at the con-
clusion of each run. The selection of initial models is described be-
low. Runs that terminate with variable best-fit parameters p and
differing cost functions φ are suggestive of termination at local
minima.
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RESULTS AND DISCUSSION

Synthetic model

This inversion method is evaluated by creating a 3D synthetic
model of a PVC pipe filled with fresh water and buried 35 cm
in homogeneous semi-dry sand (Figure 3a; Table 1). The model
is used to generate synthetic 3D GPR readings. The GPR data
set (Figure 3c) is created assuming a common-offset survey with
an 800 MHz antenna set with 14 cm spacing between transmitter
and receiver. Every 5 cm, a pulse is transmitted and received, with
12 traces in total. The synthetic waveform is a fourth derivative of
the Gaussian waveform, similar to those of some commercial sys-
tems (Figure 3b). The cell size in the gprMax 3D forward model
is 1 × 1 × 1 mm.

The ray-based analysis is applied to the synthetic GPR data (Fig-
ure 3c) assuming the pipe to be water filled. The ray-based analysis
estimates the diameter with 15% error (Table 1). In contrast, an air-
filling assumption results in an approximately 10%–30% error in
diameter estimation. Lateral position and soil average permittivity
and conductivity are well-estimated using the ray-based analysis
(Table 1). The 3D to 2D transformation is applied, and the trans-
formed data are then treated as the “observed data” in the inversion
process.
A uniform soil permittivity, a uniform effective soil conductivity,

a uniform effective in-filling conductivity, and the pipe lateral po-
sition and depth are set following the methods described above.
Therefore, the unknown parameters in the inversion process are de-
fined to be uniform soil and pipe-filling permittivities, pipe depth,

Table 1. The correct, initial guess, and inverted parameter values for the synthetic model. Pipe diameter estimate is significantly
improved by the inversion process. Soil conductivity and pipefilling conductivity are fixed to the ray-based results during FWI.

Case Parameter
Correct
value

Ray-based
estimation

FWI result with the
ray-based results as
the starting model

Estimation
error (%)

Synthetic model
of the water-filled
pipe

Relative permittivity of the soil 5 5.1 5.09 1.8

Electrical conductivity of the soil (mS∕m) (fixed) 2 2.3 — —
Relative permittivity of pipe-filling material (water) 80 80 78.5 2.25

Electrical conductivity of pipe-filling material
(water) (mS∕m)

1 2.5 — —

X (center of the pipe) (cm) 50 49.95 49.95 0.1

Depth of the top of the pipe (cm) 35 33.65 35.08 0.23

Pipe wall thickness (mm) (fixed) 3 — — —
Pipe inner diameter (cm) 10 11.5 10.12 1.2

Pipe relative permittivity (PVC) (fixed) 3 — — —
Pipe electrical conductivity (mS∕m) (PVC) (fixed) 10 — — —

Figure 3. (a) Model geometry for a PVC pipe containing fresh water embedded in semi-dry sand. The pipe inner and outer diameter are 10 and
10.6 cm, respectively. The colored cross sections show the part of the model over which the antenna has moved. (b) The 800 MHz fourth
derivative Gaussian wavelet assumed for the GPR signal. (c) The GPR profile produced by synthesizing readings every 5 cm across the model.
The circles show the arrival-time picks used in the ray-based inversion. The white lines show the arrival-time curves predicted form the ray-
based inversion parameters.
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and inner diameter. In this scenario, the pipe is
assumed to be known to be constructed with
PVC of typical wall thickness (3 mm), and the
pipe permittivity and conductivity are set to values
appropriate for PVC (see Table 1). To mimic the
inversion process in which the SW is not known,
an initial guess of a Ricker wavelet is applied as
the SW (Figure 4) and a synthetic 2D model is
generated using the ray-based estimated model
and the Ricker wavelet. For the wavelet estima-
tion, the direct air and ground wave are excluded.
With the deconvolution method, the model SW is
corrected (see Figure 4, the first corrected SW).
The synthetic data are again calculated with the
first corrected wavelet. At the last step of the
SW correction, the wavelet is deconvolved again
using the second synthetic data and the observed
data (e.g., Klotzsche et al., 2010). In this process,
the symmetric Ricker shape wavelet is altered to a
nonsymmetric form closer to the real wavelet.
Because the ray-based results are good approx-

imations of the “true” model parameters, Figure 5
illustrates that the effective SW correction alone
produces a good fit between the hyperbola from
the top of the pipe of the observed and modeled
GPR traces. The inversion procedure for the soil
and pipe properties and dimensions then brings
improved alignment of the bottom of pipe diffrac-
tion returns (Figure 5) and reduces errors (Table 1).
For instance, the ray theory estimated the pipe in-
ner diameter to be 11.5 cm, whereas the FWI
process improved this estimate model parameter
to 10.12 cm (1.2% error). The estimated depth
also shows an improvement after the FWI process.
To study the effect of the initial value selection

on the FWI results, the FWI process was run 22
times for this case, in each case varying the per-
mittivity of the pipe filling material and pipe
diameter as initial model parameters. In each
case, the effective SW is computed with the
model medium properties. The initial values
were specified in 15 cases by randomly varying
values in a Gaussian distribution around the best
fit inversion results of Table 1 with a standard
deviation of 50% of the ray-based result and then
in seven cases by randomly assigning more
extreme outliers to selected parameters (a com-
prehensive examination of all five inversion
parameters was computationally not feasible
and is outside the scope of this paper). Figure 6
summarizes the changes in cost function from the
initial value to the final inversion value for all
runs, for the pipe inner diameter (Figure 6a)
and the pipe-filling relative permittivity (Fig-
ure 6b). Note that only the first and last steps
of the inversion process are shown as the tail
and tip of the arrows; the successive changes
in parameters through multiple iterations are
not shown.

Figure 4. The real SW used to create 3D model (black), initial SW used in the synthetic
model (gray); the first (light dashed gray), and second corrected effective SW pulse (dark
dashed gray). The amplitudes are normalized.

Figure 5. Comparison of observed true synthetic GPR traces (black), the GPR traces
predicted from the initial model and corrected SW (dashed), and the GPR traces pre-
dicted from the final inverted model (gray). Traces are normalized individually.

Figure 6. Cost function values associated with the initial guess (tail of arrow) and the
inversion output (tip of the arrow) for 22 runs. Note that in each run, the initial values of
the other variables in the inversion also vary. (a) The cost function changes with the inner
pipe diameter. The dashed gray line marks the true (simulated) 10 cm pipe inner diam-
eter. (b) The cost function changes with the infilling relative permittivity. The dashed
gray line marks the true pipe filling relative permittivity of 80. With starting values of
pipe diameter within a factor of two of the correct value, the inversion improves the
estimate of the pipe diameter. The bold gray arrows show the inversion run with starting
parameters from the ray-based analysis, listed in Table 1.
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Figure 6a shows that the diameter estimates are improved for all
starting values within a factor of two of the true value. Many initial
models converge at a 1–2 mm overestimate of the pipe diameter, but
the ray-based analysis starting model yields a final diameter only
0.12 mm greater than the true value, a difference less than the
1 mm cell size in the forward models. From Figure 6b, it can be
concluded that inversions starting with significantly lower initial
assigned in-filling relative permittivity values (<50) and initial pipe
diameters that differed from the true diameter by more than 50%
failed to reach within 10% of the true value. Lower initial pipe-fill-
ing relative permittivities (≤50) also significantly increased the time
for convergence. We defer more detailed discussion of starting mod-
els to the more realistic field case studies described below.
The synthetic model results above show that this FWI method is

effective for improving estimates of pipe dimensions in highly
idealized conditions. The effects of realistic soil heterogeneities
are missing. In the following section, results of the method in
real-world but well-controlled scenarios are presented.

Case studies of PVC pipe in well-sorted sands

The inversion method was tested with GPR profiles run across a
buried PVC pipe of known position and dimensions. The field tests
were run in the Geopark of the University of South Florida in
Tampa, Florida, USA (Vacher, 2017). There, the uppermost 1–2 m
consist of well-sorted loose sand over progressively more silty and
clay-rich layers (e.g., Bumpus and Kruse, 2014).
In mid-May 2016, several reconnaissance GPR profiles were col-

lected to find an area with few tree roots and low degree of soil
disturbance. Once a preferred location was found, a trench was ex-
cavated to bury a PVC pipe (Figure 7). The selected PVC pipe has
an outer diameter of 8.2 cm and a wall thickness of 3 mm, and it was
placed so that the top of the pipe lay 35 cm below the ground sur-
face. One end of the horizontal PVC pipe was closed with a PVC
lid, and the other end was connected to another vertical pipe through
a 90° PVC elbow. The “L”-shaped pipe was designed to enable re-
searchers to fill the pipe with liquids (Figures 7a, 7b, and 8). Once
the burial depth of the top of the pipe was confirmed to be the same
at the elbow location and the lid, the trench was refilled. Before
refilling with the native sand, the sand was sieved to remove small

tree roots. Attempts were made to make sure that the soil was as
uniformly distributed as possible above the pipe to increase the
chances of receiving clear diffracted hyperbolas.
Two subsequent GPR surveys were performed. The first was run

on the empty, air-filled pipe on the same day the pipe was buried.
The second was run almost six weeks later, in late July 2016.
Although the soil was quite dry on the day of the July survey, there
had been heavy rains in the six weeks since the pipe was installed,
so it is assumed that the soil over the trench had settled and com-
pacted to a degree more similar to undisturbed neighboring soil. For
this second survey, the pipe was completely filled with fresh water.
In this paper, we discuss the July water-filled pipe survey first be-
cause the data interpretation is more straightforward.

Case study 1: Water-filled pipe

After the pipe was filled with water, as illustrated in Figure 8, a
grid of 15 parallel profiles was acquired, with 5 cm spacing between
profiles (a subset is shown in Figure 9). All profiles were run in a
north–south direction, perpendicular to the pipe that was laid in an
east–west direction. A Mala-ProEx system with 800 MHz shielded
antennas was used. The spacing between traces along each profile
was set to 8.5 mm and was controlled by an odometer wheel that

Figure 7. (a) The L-shaped PVC pipe in the hole in sand. (b) The elbow part of the pipe showing the burial depth of 35 cm for the top of the
horizontal part. (c) After filling the hole, the vertical part is visible that enables filling the pipe. The horizontal part of the pipe is aligned
between the pink flags.

Figure 8. Schematic sketch of the pipe buried in sand. The mod-
erate gray color shows the water level in the pipe.
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Figure 9. Profiles of the water-filled pipe buried in sand. The left-most left plot is closest to the pipe elbow; the right-most right plot is closest
to the lid. Diffracted hyperbolas are recorded from the top and bottom of the pipe, at all locations. The arrow shows the profile used for FWI.

Table 2. Sample inversion results for air- and water-filled pipes. Ray-based analysis results are used as the initial values in the
FWI. Soil conductivity and pipe-filling conductivity are fixed to the ray-based results during FWI.

Case Parameter
Correct
value

Ray-based
estimation

FWI result with
the ray-based results
as the starting model

Estimation
error (%)

Water-filled pipe Relative permittivity of the soil — 5.822 5.85 —
Electrical conductivity of the soil (mS∕m) (fixed) — 3.2 — —

X (center of the pipe) (m) 1.09 1.088 1.09 0

Depth of the top of the pipe (cm) 35 33.55 34.84 0.46

Pipe wall thickness (mm) (Fixed) 3 — — —
Pipe inner diameter (cm) 7.6 6.8 7.59 0.13

Relative permittivity of the pipe-filling material (water) — 80 74 —
Effective electrical conductivity of pipe-filling

material (water) (mS/m) (fixed)
— 0.02 — —

Pipe relative permittivity (PVC) (fixed) — 3 — —
Pipe electrical conductivity (mS∕m) (PVC) (fixed) — 1 — —

Air-filled pipe Relative permittivity of soil — 4.52 4.6 —
Electrical conductivity of soil (mS∕m) (fixed) — 4.23 — —

X (center of the pipe) 1.09 1.095 1.092 0.18

Depth of the top of the pipe (cm) 35 34.7 34.8 0.57

Pipe wall thickness (mm) (fixed) 3 — — —
Pipe inner diameter (cm) 7.6 Between

3 and 30
8.18

(starting value = 12)
7.6

Relative permittivity of the pipe-filling material (air) 1 1 1 0

Effective electrical conductivity of the pipe-filling
material (air) (mS∕m) (fixed)

0 — — —

Pipe relative permittivity (PVC) (fixed) — 3 — —
Pipe electrical conductivity (mS∕m) (PVC) (fixed) — 1 — —
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was calibrated on site. The 80 traces centered on the hyperbola were
selected to use in the inversion process. The water-filled pipe pro-
duces sharp hyperbolas in all the GPR profiles.
For a water-filled pipe, distinct reflections from the top and

bottom of pipe are anticipated if the pipe diameter is greater than
approximately half the radar wavelength. For this scenario, a wave-
length of approximately 4 cm is expected; the pipe diameter of
7.6 cm is almost twice this value. Clear hyperbolas are indeed ob-
served from top and bottom of the pipe in all 15 profiles. The central
profile marked by the arrow in Figure 9 has one of the cleanest pipe
returns recorded, and it was selected for the FWI.
From the selected profile, the closest 80 traces to the pipe were

extracted for the FWI (Figure 9). The optimal data range and trace
spacing for inversion is site dependent and outside the scope of this
paper. The ray-based analysis was performed on the selected data
set (Table 2) followed by the 3D to 2D transformation. Figure 10
presents the 80 traces after basic filtering, including a 4 ns dewow
filter, a time-zero correction, a high-cut 1600 MHz frequency filter,
an average xy filter with a 3 × 3 window size (this subjectively
chosen window size smooths the data slightly, does not generally
affect amplitudes on average by more than 1%, and improves the

performance of the inversion process), and a 3D
to 2D transformation.
We found that the inversion procedure yields

better results if the direct wave arrivals are ex-
cluded when computing the residuals vector R
(equation 4). The direct arrivals are excluded
as shown in Figure 10.
The ray-based analysis was used to create an

initial model to start the inversion. Because two
diffraction hyperbolas are observed, we used the
liquid-filled assumption for the pipe. The ray
theory starting estimates are listed in Table 2.
Conductivity values were fixed during FWI,
and traces were individually normalized in the
cost function calculations. Ray theory estimates
the diameter with approximately10% error if a
good infilling permittivity is chosen (Table 2).
The permittivity, conductivity, and the wall thick-
ness of the pipe itself (PVC) were assumed to be
known and fixed to the actual values.
After setting the initial model parameters

as described above, the initial synthetic GPR data
were computed assuming a cell size of 1 × 1 mm

in the gprMax 2D forward models and a fourth
derivative of the Gaussian wavelet as the SW.
Using the deconvolution method, the SW was
corrected twice (Figure 11). This wavelet is sim-
ilar to that obtained for other data sets using a
similar instrument from the same manufacturer
(Klotzsche et al., 2013).
Neither the shape of the first reflected signals

from the top of the pipe nor the second reflected
signals from the bottom of the pipe are modeled
acceptably with the initial guess parameters be-
cause the shape of the SW has not been corrected
(see Figure 12a). After the SW correction (Fig-
ure 12b), the reflections from the bottom of the
pipe are still poorly fit because the initial model

Figure 10. Profile over the water-filled pipe, direct wave excluded.
The first strong return between 7 and 10 ns is the reflection from the
top of the pipe; the second return between 12 and 15 ns is from the
bottom of the pipe. The latest weak return between 17 and 19 ns is a
multiple. The circles show the arrival time picks used in the ray-
based inversion. The white lines show the arrival time curves pre-
dicted from the ray-based inversion parameters.

Figure 11. The initial and corrected effective SWs. The second corrected SW has an
overall shape similar to the fourth Gaussian derivative, but it is not symmetric.

Figure 12. (a) Observed data (black) and initial synthetic data (gray) comparison.
(b) The same plot after SW correction; the first reflected signals fit better than the pre-
vious model. (c) The same plot after the FWI process. A generally good fit between the
observed and modeled data is observed. Traces are normalized individually.
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still misestimates the pipe diameter. After 17 iterations, the model
and observed data fit is far superior (Figure 12c).
The inversion process maintains values for pipe-filling material

that are close to the expected values for fresh water (see Table 2).
The depth and pipe diameter are recovered to within 1% of their
known values.
To investigate the sensitivity of the inversion algorithm to the

initial values, the FWI process was run 20 times for the water-filled
pipe case, similar to the process described above
for the synthetic model. Figure 13 summarizes
the changes in cost function from the initial value
to the final inversion value for the 20 runs, for the
pipe inner diameter (Figure 13a) and the pipe-
filling relative permittivity (Figure 13b).
Figure 13 illustrates that models with initial

pipe diameters between 5 and 10 cm converge
to within 1 cm of the 7.6 cm correct value. Mod-
els with more widely different starting values end
up at local minima of the cost function.

Case study 2: Air-filled pipe

On the same day that the pipe was buried, GPR
profiles were collected using the 800 MHz an-
tenna with the same settings as the previous sec-
tion, but the pipe was empty. An air-filled pipe
should produce weaker reflections and a shorter
time gap between the upper and lower returns.
Presumably, also the sand covering the pipe
was less uniformly compacted and drier on the
day of burial than six weeks later, and thus we
expect more “background noise” and a longer in-
coming wavelength in this case. These factors
combine to make the FWI in this case more chal-
lenging, designed to illustrate the efficiency of
this technique in a more complex case.
A GPR profile (Figure 14) was selected for the inversion pro-

cedure at the same location of the inverted profile in case study
1. Comparing Figures 10 and 14 illustrates the expected effects
of water versus air and soil compaction. The air-filled pipe produces
less pronounced and overlapping diffraction hyperbolas. There is
also some scattered energy recorded before the hyperbolas, as an-
ticipated due to heterogeneity in the sand. Using the ray-based
scheme, the average sand relative permittivity was estimated to
be 4.52, i.e., an average velocity of almost 0.14 m∕ns, indicating
that the sand was much dryer at the time of this survey than at
the time of the later survey over the water-filled pipe. The depth
and the lateral location of the pipe are well-estimated from the
ray-based analysis (Table 2). Because there is just one hyperbola
recorded from the pipe, the diameter and pipe-filling conductivity
estimation are challenging. Traditional hyperbola fitting anticipates
the pipes within diameter of 3–30 cm to be a fit to these data. Be-
cause the starting model parameters should be provided for FWI,
the initial diameter of the pipe is set to 12 cm for the sample
run. We can guess that the pipe is filled with air, and the appropriate
permittivity and conductivities are assigned.
The 3D to 2D transformation, effective SW estimation (Fig-

ure 15), and inversion procedure and assumptions are identical
to those described for the water-filled pipe. Similar to two previous
cases, the unknowns assigned to the inversion procedure are the

pipe position, pipe diameter, and soil and pipe-filling permittivities.
Initial parameter values for a sample run are listed in Table 2, and
the inversion results are presented in Figure 16.
The final model after FWI is an improved but clearly imperfect fit

to the real data, with the inverted parameter values listed in Table 2.
Misfits are presumably caused in part by unmodeled soil hetero-
geneities. The pipe dimension is recovered with 8% error.

Figure 13. Cost function values associated with the initial guess (tail of arrow) and in-
version output (tip of the arrow) for 20 runs. Note that in each run, the initial values of
the other variables in the inversion also vary. The thick gray arrows belong to the in-
version starting from the ray-based analysis listed in Table 2. (a) The cost function
changes with the inner pipe diameter. The dashed gray line marks the known
7.6 cm pipe inner diameter. With starting values of pipe diameter within 50% of the
correct value, the inversion improves the estimate of the pipe diameter. (b) The cost
function changes with infilling relative permittivity.

Figure 14. The GPR profile over the air-filled pipe, direct wave
excluded. A primary reflection from the top of the pipe is observed
between 6 and 9 ns. Dewow, zero-time correction, band pass, and
average xy filters are applied with the same settings as for the water-
filled pipe (Figure 10). Data are transformed to two dimensions. The
circles show the arrival-time picks used in the ray-based inversion.
The white line shows the arrival-time curves predicted from the ray-
based inversion parameters.
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To investigate the quality of inversion results
and assess local minima of the cost function, 20
different models were run with different starting
parameters (permittivity of pipe filling and diam-
eter and depth). The SW was estimated for each
of the tests separately. Figure 17 summarizes the
changes in the cost function from the initial value
to the final inversion value for the 20 runs,
for the pipe inner diameter (Figure 17a) and
the pipe-filling relative permittivity (Figure 17b).
Because of the interference (overlap) in re-

turns between the top of the pipe and the bottom
of the pipe in the air-filled case, models that
started with initial diameters significantly too
large or too small fail to account for the overlap
and yield SWs that look dramatically different
from those of the better models. This in turn
yields unsatisfactory inversion results, under-
scoring the importance of the initial model.
These tests for the air-filled case suggest that
the initial models with diameters within 30%
of the true diameter are consistently improved
in the inversion process.

DISCUSSION

In these simple field tests, the pipe diameter
estimates are significantly improved when the in-
itial guess is within approximately 50% of the
true value for the water-filled pipe with distinct
returns from the top and bottom, and within ap-
proximately 30% of the true value for the air-
filled pipe. With the good initial guess, inversion
generally proceeds to within 1 cm or less of the
true value (in this case to <8% error). This is an
improvement over the traditional ray-based
scheme, in which the diameter is estimated by
trial-and-error fit of the observed hyperbola to
the expected arrival times for returns over pipes
of varying sizes. As described in the “Introduc-
tion” section, the trial-and-error fit for the air-
filled pipe case (inner diameter 7.6 cm) yielded
reasonable results for diameters ranging from
3 to 30 cm.
This method in its current form is thus suitable

for improving good starting estimates of the pipe
diameter in simple cases with isolated diffraction
hyperbolas. Examination of model runs such as
those shown in Tables 1 and 2 and Figure 13
shows that the initially good pipe diameter esti-
mates are also typically slightly improved in
the inversion. Conductivity values are fixed to
the ray-based analysis results, for the reasons
described for previous cases above. To obtain
conductivities, the SW could be updated during
the FWI following a process similar to Busch
et al. (2012, 2014).
The method described here shares the conclu-

sions of Meles et al. (2012) that starting model
estimates must be sufficiently good such that

Figure 16. (a) Observed data (black) and initial synthetic data (gray) comparison.
(b) The same plot after the SW correction. The reflected signals are a better fit.
(c) The same plot after the FWI process.

Figure 17. Cost function values associated with the initial guess (tail of the arrow) and
the inversion output (tip of arrow) for 20 runs. The thick gray arrows belong to the
inversion included in Table 2. (a) The cost function changes with the inner pipe diameter.
The dashed gray line marks the known 7.6 cm pipe inner diameter. (b) The cost function
changes with the infilling relative permittivity. The dashed gray line marks one as the
relative permittivity of air. The inversion process clearly targets local minima if the ini-
tial estimate of pipe-filling permittivity is poor.

Figure 15. The initial and corrected effective SWs for the air-filled pipe.
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synthetic data pulses are offset less than a half wavelength from the
measured traces. For the clean synthetic data, this criteria can be met
with a model that assumes a permittivity within 50% of the correct
value, and the inversion proceeds toward a permittivity closer to the
correct value. For the field data case in which two diffracted hyper-
bolas are recorded, ray theory can provide good starting model
parameters for the FWI process. In the cases of gas-filled pipes
(or very narrow liquid-filled cylinders, such as tree roots) that
are likely to generate just one diffraction hyperbola, the ray theory
fails to provide good starting models; in this case, the best judgment
of the user must be used to set the initial model parameters. In this
sense, a successful inversion confirms the initial guess, whereas a
failure to converge or a small reduction in cost function suggests a
poor starting model.

CONCLUSION

This paper introduces a new method for FWI of common-offset
GPR data, particularly targeting the dimensions and infilling
material of buried pipes. The method is designed to be used in
which clear isolated diffraction hyperbolas indicate the presence
of a pipe, but pipe dimensions and filling may be unknown. The
method consists of five main steps: GPR data processing, ray-based
analysis to set a good initial model, 3D to 2D transformation of data,
effective SWestimation, and FWI. The method combines two freely
available software packages: PEST for the inversion and gprMax
for forward modeling of the GPR data.
This method is applied on a synthetic 3D data set and two

800 MHz GPR profiles collected over a PVC pipe buried in clean
sands. In the synthetic and water-filled and air-filled pipe field
cases, good initial estimates of the depth and diameter of the pipe
from the ray-based analysis are improved after FWI. The tests show
that although the initial estimate of pipe diameter is within 30%–
50% of the true value, the inversion yields estimates with < 8% er-
ror. For the field data, the requirement of a good starting model can,
in practice, confirm or deny a starting assumption about the pipe-
filling material.
Ray-based analysis is essential to set up the starting model, par-

ticularly to estimate the pipe location and average soil permittivity
and conductivity. Although ray-based conductivity estimates are
possible, improvement in the conductivity would require the SW
to be updated after each iteration in the FWI procedure. Iterations
on the SW during the FWI process, as in Busch et al. (2012, 2014),
are beyond the scope of this study.
The method in its present form is only effective for isolated hy-

perbolas, and it assumes that GPR surveys are conducted with
broadside antenna geometry along profiles perpendicular to hori-
zontal pipes. Furthermore, the soil is assumed to be locally homo-
geneous. Relaxation of these conditions is the subject of ongoing
research.
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APPENDIX A

RAY BASED ANALYSIS TO ESTIMATE CONDUC-
TIVITY VALUES

Assuming homogeneous soil, the amplitude of the GPR wave
decays due to geometric spreading and soil attenuation. The com-
bination of these two effects can be described with wave amplitude
proportional to e−αr∕r in 3D media, in which the attenuation term α
can be described as

α ¼ σ

2

ffiffiffi
μ

ε

r
; (A-1)

where σ is the soil conductivity, μ is the magnetic permeability, and
ε is the mean absolute electrical permittivity of the soil.
To estimate the conductivity of the soil, the peak amplitudes of

the first pipe diffraction hyperbola arrivals are picked and used in a
least-squares inversion for the attenuation term, and thereby the soil
conductivity. Assuming far-field amplitudes, a uniform antenna ra-
diation pattern, and a uniform reflection coefficient from all parts of
the pipe, the amplitude A of the wave having traveled a distance r is
expressed as

A ¼ A0

e−αr

r
; (A-2)

where A0 is a constant. The term e−αr can be replaced the first
two terms of its Taylor series expansion, 1þ αr, leaving
A ¼ A0ð1∕ðeαrÞrÞ ≈ A0ð1∕ð1þ αrÞrÞ. Rearranging,
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�
α

A0

�
Ar2 ¼ 1: (A-3)

By picking the peak amplitude and computing the travel distance
for each trace in the diffraction hyperbola, the Jacobian matrix J is
created. Then, the unity vector I and parameter vector p are calcu-
lated via

J ¼

2
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A1r1 A1r21
..
. ..

.

Anrn Anr2n

3
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3
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1

3
75: (A-4)

The parameter vector p can be estimated with the least-squares
solution (p ¼ ðJTJÞ−1JTI) of these systems using equation A-4.
The attenuation term α is estimated as

α ¼ p2∕p1: (A-5)

We note that the simplifying assumptions about far-field ampli-
tudes, radiation patterns, and uniform scattering are not strictly valid
in real scenarios. However, tests showed that more complicated
models did not yield conductivity estimates that consistently pro-
duced better inversion results.
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