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Sparse Blind Deconvolution of
Ground Penetrating Radar Data

Sajad Jazayeri , Nasser Kazemi , and Sarah Kruse

Abstract— We propose an effective method for sparse blind
deconvolution (SBD) of ground penetrating radar data. The SBD
algorithm has no constraints on the phase of the wavelet, but
the initial wavelet must be carefully captured from the data. The
data are considered a convolution product of an unknown source
wavelet and unknown sparse reflectivity series. The algorithm
developed here is an alternating minimization technique that
updates the reflectivity series and the wavelet iteratively. The
reflectivity update is solved as an �2 − �1 problem with the
alternating split Bregman iteration technique. The wavelet update
is solved as an �2 − �2 problem with Wiener deconvolution. The
algorithm converges to a local minimum. In order to increase
the likelihood so that convergence coincides with the desired
local minimum, special steps are taken to provide a proper
initial wavelet. Synthetic and real data examples show that
both subsurface reflectivity series and wavelet (amplitude and
phase) can be estimated efficiently. The SBD method presented
appears robust and compares favorably to previous studies in its
resistance to noise.

Index Terms— Deconvolution, ground penetrating radar
(GPR), reflectivity, source wavelet, sparsity.

I. INTRODUCTION

DECONVOLUTION is a popular deblurring technique
used in signal and image processing, with applications

in photography, remote sensing, astronomy, medical imaging,
geophysics, and more [1], [2]. When successfully applied to
blurry or distorted matrices, the result is a clearer image
with more details. In geophysics, particularly in exploration
seismology, the goal of deconvolution is higher resolution
subsurface images [3]. Deconvolution works by removing the
signature of the propagated waveform. Ideally, what is left is
a representation of the subsurface pattern of reflection coeffi-
cients, which present a high-resolution subsurface image [4].

Deconvolution of ground penetrating radar (GPR) data is
used to estimate the reflectivity series [5]–[13], to produce
a higher resolution subsurface image or a clean reflectivity
series that can be used for ray-based travel-time analysis.
GPR deconvolution is also used to extract the shape of the
transmitted pulse [14]–[16], for use in modeling procedures

Manuscript received April 27, 2018; revised August 10, 2018 and
September 23, 2018; accepted November 18, 2018. (Corresponding author:
Sajad Jazayeri.)

S. Jazayeri and S. Kruse are with the School of Geosciences, University
of South Florida, Tampa, FL 33620 USA (e-mail: sjazayeri@mail.usf.edu;
skruse@usf.edu).

N. Kazemi is with the Department of Chemical and Petroleum Engi-
neering, University of Calgary, Calgary, AB T2N 1N4, Canada (e-mail:
nasser.kazeminojadeh@ucalgary.ca).

Digital Object Identifier 10.1109/TGRS.2018.2886741

such as full-waveform inversion (FWI). Factors such as
antenna-ground coupling and Earth’s filtering effects due to
soil’s characteristics alter the shape of the wavelet [10], which
make it challenging to estimate the waveform and reflectivity
series.

The widely used Wiener deconvolution [17], [18] has some
disadvantages when applied to GPR data. Wiener deconvolu-
tion assumes that the reflectivity series has an ideal statistical
property, i.e., it is white noise, and the wavelet has a minimum
phase characteristics [17], [18]. However, Ricker [19] shows
that due to the earth filtering, the average wavelet is different
from the near-source signature. We show, here, that when
using the Wiener deconvolution method, we can only estimate
a smooth reflectivity series and a residual wavelet; any dif-
ference between the actual wavelet and its minimum phase
equivalent remains untouched in the recovered reflectivity
series. Fortunately, a body of literature shows the possibility of
estimating nonminimum phase wavelets by imposing a sparsity
constraint instead of a white noise assumption (i.e., Gaussian
distribution) on the reflectivity series [20]–[25].

The alternative deconvolution method is referred to as sparse
blind deconvolution (SBD). A sparsity assumption is imposed
on the matrix of reflection coefficients. The process begins
“blindly” in that it is formulated to start without requiring a
starting model of reflection coefficients, or without a starting
model for the source wavelet. The sparsity assumption is well
adapted to enhancing the resolution of thin layers and isolated
buried objects. The method thus holds promise particularly
for both layered geological features and engineering, archeo-
logical, or tree root applications where finite objects produce
distinctive returns within a background of soil structure. Few
studies have applied a sparsity assumption while performing
deconvolution on GPR data [26], [27]. The method presented
by Chahine et al. [26] improves image resolution in the pres-
ence of thin layers by sparsity maximization in the reflectivity
series with results similar to spiking deconvolution. Their
method requires a minimum phase wavelet and is sensitive
to noise. Li [27] introduces an alternating iterative method to
solve the nonconvex optimization problem, with a threshold
maximum for the reflector amplitudes to avoid trapping the
solution in local minima. Tested only on synthetic data,
Li’s algorithm struggles to recover the shape and the phase
of the source wavelet in the presence of noise.

In this paper, we propose an alternating SBD method
targeting GPR data, which may be more robust in the presence
of noise. The algorithm estimates both the wavelet and the

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7441-5645
https://orcid.org/0000-0002-1022-9576


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

reflectivity series iteratively while removing any constraints
on the phase of the wavelet. The optimization problem in this
paper is nonlinear when we consider both reflectivity series
and the wavelet as unknowns. However, if we fix the wavelet,
the cost function will be linear with regards to the reflectivity
series and vice versa. There are nonlinear algorithms that aim
at finding the global solution of the original problem; however,
nonlinear algorithms are computationally expensive. Instead,
we solve the cost function in an alternating fashion, which
allows us to use fast and efficient solvers. The drawback is that
the algorithm is a local minimization technique and, therefore,
requires a proper initial model. To remedy this shortcoming,
we carefully capture an initial wavelet estimate from the data
(this initial estimate is improved upon in the optimization
process). The selection of parameters required for the inversion
is automated. The blind recovery of the reflectivity series and
wavelet is found to be stable on a range of synthetic and field
data scenarios. The examples selected to show in this paper
focus on distinct cylindrical sources, such as pipes and roots,
in a soil background. In these scenarios, the proposed method
provides a higher resolution reflectivity series than Wiener
deconvolution and appears to be more stable in the presence
of noise.

We begin this paper with the larger context for this paper,
introducing convolution, deconvolution, and blind deconvolu-
tion models. Within this framework, our method is detailed
and then tested on both synthetic and field data.

A. Convolution Model

The impulse response of the earth can be modeled as a
linear time-invariant system [28]. In geophysics, the impulse
response is called the reflectivity series. Assuming a stationary
blurring kernel, the recorded GPR data at the surface are
defined as the convolution of the blurring kernel with the
impulse response of the earth. The blurring kernel refers to
an imperfection of the system (low-pass filter), which results
in lowering the resolution of the recorded data. If we assume
that the blurring kernel does not change through time, it is
called a stationary blurring kernel. In different fields of study,
this imperfection is defined as the blurring kernel, source
signature, source wavelet, point spread function, wavelet, and
so on. In the geophysics community, this low-pass filter comes
from the source wavelet which is band-limited, and when it is
convolved with the reflectivity series, it lowers the resolution
of the data. In this paper, we will call this blurring kernel
the source wavelet or wavelet for short. The input–output
relationship for this system can be written as follows:

d j [n] =
�

k

w[n − k]r j [k] + e j [n], j = 1, 2, . . . J (1)

where the GPR data in the trace j are given by d j =
(d j [0], d j [1], . . . , d j [N−1])T . Similarly, the impulse response
for trace j is given by r j = (r j [0], r j [1], . . . , r j [M − 1])T ,
e j = (e j [0], e j [1], . . . , e j [N − 1])T is the additive noise
term, and the stationary GPR wavelet is w = (w[0],
w[1], . . . , w[L − 1])T , and T stands for transpose operator.
We stress that N = M + L − 1. In matrix vector notation,

(1) can be cast as

d j =W r j + e j , j = 1, 2, . . . J (2)

where W is the convolution matrix built from the wavelet.
To be more specific, the matrix W has a Toeplitz structure
with entries

W=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w(0)
w(1) w(0)
w(2) w(1) w(0)

...
. . .

w(L − 1) w(L − 2)
w(L − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We would also like to remind the readers that using com-
mutative property of convolution, (2) is equivalent to

d j = R j w + e j , j = 1, 2, . . . J (4)

where R j is the convolution matrix built from the reflectivity
series of channel j with proper dimensions.

B. Deconvolution Model

1) Deconvolution to Estimate the Reflectivities: Determin-
istic deconvolution can be used to remove the effect of the
wavelet from the data if the wavelet is known. In some rare
cases, the signature of the source is known, as, for example,
if the source is fully controlled. In other cases, the wavelet
can be estimated from the data. This is done, for example,
in marine seismic by averaging the signature of the ocean
bottom reflector [29]. Assuming that the wavelet is known
a priori, the idea is to design a filter fw such that when applied
to the data, the output would represent the reflectivity series

r = Fwd (5)

where d = [dT
1 , dT

2 , . . . , dT
N ]T , Fw is the convolution matrix

built from fw, and r = [rT
1 , rT

2 , . . . , rT
J ]T is the estimated

reflectivity series. Ideally, Fw should be the inverse of H where
H is a block diagonal matrix with J blocks each block being
equal to W. Unfortunately, the H matrix is not invertible. The
simplest solution for inverting the H matrix is the Wiener
deconvolution method, which is the solution to

r = argmin
r
||Hr− d||22. (6)

Equation (6) is a convex optimization problem and has a
closed-form solution

r = (HT H)−1HT d. (7)

Comparing (5) and (7) implies that Fw = (HT H)−1HT .
To estimate a physically plausible reflectivity series, we could
also incorporate more information about the reflectivity series
into (6)

r = argmin
r
||Hr− d||22 + λrR(r) (8)

where R(r) is a regularization term that enhances some
desired features in the reflectivity series and λr is a regular-
ization parameter that balances the importance of data fidelity
and priori information about the reflectivity series.
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2) Deconvolution to Estimate the Wavelet: In a process
analogous to Section I-B.1, deterministic deconvolution can
be used to remove the effect of the reflectivity series from
the data, if the reflectivity series is known. This can be done
at well locations, where well logs are used to generate the
reflectivity series [30], [31]. The generated reflectivity series
are then used to estimate the waveform. The result can serve
as a global waveform for further types of modeling or as an
input to an FWI workflow. In GPR, a well-known approach is
to estimate the subsurface reflectivity series by performing ray-
based inversion. The estimated reflectivity equivalent structure
(which is used in the same manner as well data for seismic)
is then deconvolved from the collected data to estimate the
wavelet [14]–[16]. In this case, deconvolution simply is done
by finding a filter fr such that when applied to the data,
the output would represent the wavelet

w = Fr d (9)

where Fr is the convolution matrix built from fr and w is
the estimated wavelet. Ideally, Fr should be the inverse of R
where R is a matrix with entries

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

R1
R2
R3
...

RJ−1
RJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The R matrix is not invertible, so the simplest solution
for inverting the matrix is the Wiener deconvolution method,
which is the solution to

w = argmin
w
||Rw− d||22. (11)

Equation (11) is a convex optimization problem and has a
closed-form solution

w = (RT R)−1RT d. (12)

Comparing (9) and (12) implies that Fr = (RT R)−1RT .
To estimate a physically plausible wavelet, we also incorporate
more information about the wavelet into (11)

w = argmin
w
||Rw− d||22 + λwR(w) (13)

where R(w) is a regularization term which enhances some
desired features in the estimated wavelet and λw is a regular-
ization parameter that balances the importance of data fidelity
and the knowledge of the wavelet.

3) Blind Deconvolution: If neither the signature of the
wavelet nor the subsurface reflectivity structure is known,
the problem is a so-called blind deconvolution problem [23],
[24], [32]. This is, of course, a common real-world scenario,
and thus, there are many reasons that blind deconvolution
solutions are desirable. Even when borehole data are used
to build reflectivity series, large data gaps remain between
boreholes, and the larger reflectivity structure is incompletely
known. Ray-based inversion to obtain geometry of subsurface
reflectors can be inaccurate since it uses only the first arrival
times of the diffracted pulses, a very small portion of the total

recorded signal. The ray-based inversion process itself can be
time-consuming. Finally, errors in the ray-based results (or
any reflectivity structure) will harm estimates of the wavelet.
In the real world, the signature of a GPR wavelet is generally
unknown and affected not only by the instrument but also
by coupling between antenna and soil, and soil electrical
characteristics that are, in turn, influenced by soil moisture
content. For FWI, which better uses the total recorded signal,
knowledge of the wavelet becomes extremely important. Any
error in the phase or the amplitude of the wavelet propagates
into the FWI subsurface characterization. To address this
common scenario, namely, lack of a priori knowledge about
both the wavelet and subsurface reflectivity structure, blind
deconvolution formulates the problem in such a way that
it simultaneously solves for the wavelet and the reflectivity
series.

The general cost function in our blind deconvolution prob-
lem is defined as

{w, r} = argmin
w,r

||Hr− d||pp + λrR(r)+ λwR(w) (14)

where p > 0, λw, λr > 0, �a�p
p = 	N

i=1 |ai |p with a =
[a1, a2, . . . , aN−1, aN ]T , and �Hr − d�p

p is a closed convex
function.

C. Problem Statement and the Proposed Approach

In this writeup, we assume that an added noise term in the
data has a Gaussian distribution and the subsurface reflectivity
series can be cast as a sparse series (i.e., few reflectors that
in the GPR case could represent any anomaly that reflects
energy). The sparse reflectivity assumption is valid for layered
media and shows promising performance in the context of
the deconvolution problem [2], [20], [23], [24], [33]. We also
assume that the wavelet is a smooth function. After incorpo-
rating these assumptions into (14), we have

{w, r} = argmin
w,r

||Hr− d||22 + λr ||r||1 + λw||w||22 (15)

and we remind the reader that (15) is equal to

{w, r} = argmin
w,r

||Rw− d||22 + λr ||r||1 + λw||w||22. (16)

Equation (15) is solved with an alternating minimization
technique. First, we solve for reflectivity series by fixing the
wavelet, simplifying (15) to

r = argmin
r
||Hr− d||22 + λr ||r||1 (17)

which is an �2 − �1 problem and can be solved with any
�2− �1 solvers, such as unconstrained basis pursuit denoising
(UBPDN) via alternating split Bregman algorithms [2],
[34], [35], Euclid in a Taxicab �1/�2 regularization [36],
majorization-minimization optimization [37], alternating
minimization [1], and gradient projection [38]. In this paper,
we use the UBPDN solved with the alternating split Bregman
algorithm to estimate the sparse reflectivity structure.

The next step is to estimate the wavelet by fixing the
reflectivity series. In this case, (15) or equivalently (16)
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Fig. 1. Synthetic 1-GHz 3-D GPR model of a profile run perpendicular over
three cylinders with 1.2-GHz noise and 500-MHz noise. Black boxes contain
trace segments used for initial wavelet estimation. Traces are computed for
7 ns; the earliest portions of the traces containing the direct wave arrivals are
removed from the analysis.

simplifies to

w = argmin
w
||Rw− d||22 + λw||w||22 (18)

which is an �2 − �2 problem and has a closed-form solution

w = (RT R + λwI)−1RT d (19)

where I is the identity matrix.
At this point, we stress that the alternating minimization

technique is a local minimization approach and special steps
must be taken to initialize the unknown variables w and r. The
initial estimation of the wavelet is of particular importance and
discussed further below.

II. METHODOLOGY

The proposed SBD method has two stages, the initializa-
tion and the main optimization. Our main optimization algo-
rithm is an alternating minimization technique. Because we
begin with (17) (updating the reflectivity with wavelet fixed),
we require the formulation of an initial wavelet. The main
algorithm then solves the general SBD equation (15) or (16)
by defining the two subproblems for reflectivity and wavelet
expressed in (17) and (18), respectively.

A. Algorithm Initialization

The proposed algorithm is a local minimizer and, therefore,
sensitive to the initial wavelet. For the ground-coupled GPR
scenarios considered here, the method is successful when we
obtain the initial wavelet from the data. To estimate the initial
wavelet, windowed portions of several traces near the apex
of the hyperbolic events in the data are averaged, as shown,
for example, in the black squared windows in Fig. 1. The
windowed traces are first shifted relative to one another to
maximize the zero-lag cross correlation. Then, the shifted
traces are stacked and normalized to provide the initial
wavelet. We note the initial wavelet is estimated in this fashion
from the data in both synthetic and real data examples.

B. Main Optimization

This section describes the alternating minimization tech-
nique. First, we illustrate updating the reflectivity series by
the alternating split Bregman algorithm for solving (17) and
then updating the wavelet by solving (19).

1) Updating Reflectivity With the Alternating Split Bregman
Algorithm: Bregman iteration regularization is based on the
Bregman distance and solves a constrained optimization prob-
lem with a general form of

r = argmin
r

C1(r) s.t. C2(r) = 0 (20)

with C1 and C2 convex, C2 differentiable, and
argminr C2(r) = 0. The Bregman distance of functional C1
between two points r1 and r2 is defined as

B Dg
C1

(r1, r2) = C1(r1)− C1(r2)− �g, r1 − r2� (21)

where g ∈ ∂C1(r2) is a subgradient of C1 at the r2 point.
Bregman iterative regularization solves the problem stated
in (20) by a sequence of convex problems

r = argmin
r

C1(r)− �gk, r� + λC2(r) (22)

and

gk+1 = gk − λ∇C2(rk+1) (23)

with k = 0, 1, 2, . . . the iteration number, λ > 0, ∇ is the
gradient operator, and gk+1 ∈ ∂C1(rk+1). To take advantage
of the Bregman iteration, we need to rewrite (17) with a similar
format to that in (20)

{r, t1} = argmin
r,t1

||t1||22 + λr ||r||1 s.t. t1 − (Hr − d) = 0

(24)

with t1 = Hr − d. Comparing (24) and (20) reveals that
C1(r, t1) = ||t1||22 + λr ||r||1 and C2(r, t1) = t1 − (Hr − d).
Using the new C1 and C2 functionals and defining t2 = r,
we derive the simplified Bregman iterations (for detailed
derivations see [39]) as

{rk+1, t1
k+1, t2

k+1} = argmin
r,t1,t2

||t1||22+λr ||t2||1

+ α

2



t1 − (Hr − y)− gk
1




+ β

2



t2 − r− gk
2



2
2 (25)

gk+1
1 = gk

1 −
�
tk+1
1 − (Hrk+1 − y)

�
(26)

gk+1
2 = gk

2 −
�
tk+1
2 − rk+1� (27)

with g0
1 = g0

2 = 0 and α, β > 0. The final step is to solve (25).
Goldstein and Osher [39] show that (25) can be divided into
three sub-problems where

rk+1 = argmin
r

α

2



tk
1 − (Hr − y)− gk

1



+ β

2



tk
2 − r − gk

2



2
2

(28)

tk+1
1 = argmin

d

α

2
||d− (Hrk+1 − y)− gk

1|| + ||d||22 (29)

tk+1
2 = argmin

d

β

2



d−Hrk+1 − gk
2



+ λr ||d||1. (30)
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Equations (28) and (29) have closed-form solutions

rk+1 = P−1αHT �
tk
1 − gk

1 + y
�+ β

�
tk
2 − gk

2

��
(31)

and

tk+1
1 = Hrk+1 − y + gk

1

1+ 2
α

(32)

where P = αHT H + βI and I is the identity matrix.
Finally, in the case of (30), Goldstein and Osher argue that a
single-iteration update is enough to approximate the solution.
Accordingly, the single-iteration solution of (30) is defined as

tk+1
2 = prox λr

β


rk+1 + gk

2

�
(33)

where prox is a proximity operator and is defined as
proxτ (a) = sign(a) � max(|a| − τ, 0) and � is the
Hadamard product. At this point by using (31)–(33) along
with (26) and (27), we finalize the alternating split Bregman
algorithm (Algorithm 1).

Algorithm 1 Alternating Split Bregman Algorithm as a
Minimizer of 24 in the Time Domain
Require: d, H, λr , α, β

Initialize: k = 0, t0
1 = t0

2 = g0
1 = g0

1 = 0
while �rk − rk−1�22 > tol do

rk+1 = P−1(αHT [tk
1 − gk

1 + y] + β[tk
2 − gk

2])
tk+1
1 = Hrk+1−y+gk

1
1+ 2

α

tk+1
2 = prox λr

β
(rk+1 + gk

2)

gk+1
1 = gk

1 − [tk+1
1 − (Hrk+1 − y)]

gk+1
2 = gk

2 − [tk+1
2 − rk+1]

k ← k + 1
end while
return r = rk

Algorithm 1 can efficiently solve (24). However, close
inspection of the algorithm shows the matrix P has a block
diagonal structure with each block being a Toeplitz matrix that
can be diagonalized in the frequency domain. Accordingly,
the update of rk+1 step can be formulated as a Wiener
deconvolution in the frequency domain without any direct
inversion of the P matrix. Hence, we formulate the alter-
nating split Bregman algorithm in the frequency domain to
decrease the computational cost of the algorithm. To do so,
the Fourier equivalent of variables is defined as ŵ = Fw,
r̂ = Fr, where F is a Fourier transform operator with Fm,n =
exp(−i2πmn/N), i = √−1, m, n = 0, 1, 2, . . . , N − 1, and
the inverse Fourier transform is F−1 = (1/N)F∗, where ∗
indicates the complex conjugate. Using these Fourier pairs,
we can write H = F−1H f F where H f is a diagonal matrix
with J matrices built from diag(ŵ) where diag(·) reshapes the
vector to a diagonal matrix. Now, we have all the ingredients
to formulate the alternating split Bregman algorithm in the
frequency domain (Algorithm 2).

2) Updating the Wavelet: To update the wavelet, we need to
solve (18), which has the closed-form solution shown in (19).
Equation (19) can also be solved in the frequency domain since

Algorithm 2 Alternating Split Bregman Algorithm as a
Minimizer of 24 in the Frequency Domain

Require: d, H f , ŵ, λr , α, β
Define: D = diag( 1

(α|ŵ|2+β)
)

Initialize: k = 0, t0
1 = t0

2 = g0
1 = g0

1 = 0
while �r̂k − r̂k−1�22 > tol do

r̂k+1 = D(αH∗f F [tk
1 − gk

1 + y] + βF [tk
2 − gk

2])
tk+1
1 = F−1H f r̂k+1−y+gk

1
1+ 2

α

tk+1
2 = prox λr

β
(F−1r̂k+1 + gk

2)

gk+1
1 = gk

1 − [tk+1
1 − (F−1H f r̂k+1 − y)]

gk+1
2 = gk

2 − [tk+1
2 − F−1r̂k+1]

k ← k + 1
end while
return r = tk

2

the matrix R has a Toeplitz structure and can be diagonalized
in the frequency domain

w = F−1

�	J
j=1 r̂∗j � d̂ j

r̄ + λw

�
(34)

where r̄ = 	J
j=1 r̂∗j � r̂ j , � is the Hadamard product, and

r̂ j and d̂ j are the Fourier pairs of reflectivity and data in trace
j , respectively.

C. SBD Algorithm

After defining the initialization step and the main opti-
mization workflow for updating the reflectivity series and the
wavelet, we can finalize the SBD algorithm. We use the more
efficient frequency domain methods. Algorithm 3 shows the
steps.

Algorithm 3 SBD Algorithm
Require: d, L, λr , λw , α, β

Define initial wavelet [using Algorithm initialization]: w0

k=0
while �Hr− d�22 > tol do

Update Hk using wk

Update reflectivity [using Algorithm 2]
rk+1 = argmin

r
||Hkr − d||22 + λr ||r||1

Update Rk+1 using rk+1

Update wavelet [using (34)]
wk+1 = argmin

w
||Rk+1w − d||22 + λw||w||22

k ← k + 1
end while
return r← rk , w← wk

III. PARAMETER SELECTION

In this section, we describe our parameter selection strate-
gies. The main parameters are length of wavelet L, regular-
ization parameter for reflectivity update λr , and regularization
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parameter for wavelet update λw . The length of the wavelet, L,
is defined subjectively as a full wavelength, which may include
a “tail” over which the pulse amplitudes converge to zero
(examples are shown in results below).

The choice of regularization parameter λr has a significant
impact on the estimated reflectivities. If the noise level δ is
known, Pareto curves can be used to define λr [40], [41].
Alternatively, the minimizer of the generalized cross-validation
(GCV) score [42] can be used for selecting the regularization
parameter

GCV(λr ) = �H rλr − d�22
(N − C × �rλr �0)2 (35)

where �·�0 is an �0 norm that counts the number of nonzero
elements, C is an stabilizing parameter [43], and rλr is the
solution of (17) to a specific regularization parameter λr .
A range of different parameters are tested and the minimizer
of the GCV score is selected as the optimum λr . The GCV
score method has the advantage of not requiring any prior
information about the noise level so is used for real-data cases.
Our tests on synthetic data show that the λr values estimated
from the Pareto curve and the GCV score are similar.

For the wavelet update, we need to define the optimum λw

parameter. Again, we make use of GCV score. The score
for the Wiener deconvolution formulation of the wavelet
estimation [2], [44] is defined as

GCV(λw) = �R wλw − d�22�
N − C ×	N−1

k=0
|ŵ[k]|2
|ŵ[k]|2+λw

�2 (36)

where wλw is the solution of (18) to a specific regularization
parameter λw . The α, β > 0 are the split Bregman tradeoff
parameters. We find that the recommended values of α = 0.5,
β = 1 from Gholami and Sacchi [2] work well for GPR
data with Gaussian noise. High values make the numerical
problem unstable. Our tests show that in data sets with high-
amplitude low-frequency noise (typical for some GPR data)
α = 0.001 − 0.01, β = 1 produce optimal reflectivity and
wavelet models.

IV. NUMERICAL RESULTS

Synthetic data sets with two different noise levels and a
field data set incorporating cylindrical objects (pipes and tree
roots) buried in soil are considered for performance evaluation
of the proposed method.

A. Synthetic Data, Cylindrical Objects Model,
and Low Noise Level

The first model uses a mixed-phase GPR wavelet with
1-GHz (Hertzian dipole antenna with a transmitter–receiver
offset of 3 cm) system response over three cylinders with
different sizes and depths embedded in a homogeneous soil
(see Table I for details). Cylinders have higher velocities
than the background soil. Synthetic data are created with the
software package gprMax [45] in 3-D. Noise is added to the
modeled data, with a Gaussian distribution of high-frequency
noise centered at 1.2 GHz and the peak value of 15% of the
pulse amplitude, and lower frequency noise (500 MHz) added

TABLE I

OBJECT AND SOIL CHARACTERISTICS FOR SYNTHETIC DATA SHOWN IN
FIG. 1. INFORMATION ABOUT THE ANTENNA AND SPLIT BREGMAN

PARAMETERS IS INCLUDED IN THE BOTTOM HALF

Fig. 2. Results from the deconvolution of the synthetic data shown
in Fig. 1. (Top) True synthetic, initial, and final estimated wavelets. The graph
shows the full length (3.7 ns) of the assumed wavelet. (Bottom) Estimated
reflectivity model.

at a lower level (10% of pulse amplitude) (Fig. 1). To avoid
the complexity of the direct wave, we applied a background
removal filter to mute the direct wave. To estimate the initial
wavelet, five traces around the apex of each hyperbolic event
(seen in black boxes in Fig. 1) are selected, time-shifted
to maximize zero-lag cross correlation, stacked and finally
normalized [Fig. 2 (top)].

After seven iterations of the main loop of the algorithm,
the model converges to the desired minimum, resulting in a
final wavelet [red dashed line in Fig. 2 (top)] very close to
the true wavelet [black line in Fig. 2 (top)] and a favorable
sparse estimate of the reflectivity model [Fig. 2 (bottom)].
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Fig. 3. Estimated data from SBD for the cylinders model with high-frequency
noise and moderate low-frequency noise. Comparison with Fig. 1 shows the
noise is reduced.

Fig. 4. Synthetic 1-GHz 3-D GPR model over buried cylinders as given
in Fig. 1, but with higher levels of low-frequency noise. Black boxes indicate
trace segments used for initial wavelet estimation. Early direct wave arrivals
are removed before analysis.

The polarity, location, and shape of the hyperbolic returns
from the cylinders are extremely well recovered. The low-
frequency random noise triggers very few sparse isolated
reflectors. The data estimated from the convolution product of
the final wavelet and the reflectivity model are shown in Fig. 3.
Comparing this result with the original data in Fig. 1 shows the
proposed SBD algorithm is an efficient method for reducing
the level of high-frequency noise. It should also be noted that
a higher resolution image of the estimated reflectivity models
is obtained after SBD compared to the collected data as the
impact of the transmitted pulse is erased from the data. The
estimated reflectivity model is an ideal model that can be used
in traditional curve fitting to identify the geometry and location
of the reflecting objects.

B. Synthetic Data, Cylindrical Objects Model,
and High Noise Level

To create a somewhat more realistic case, a higher
level of low-frequency noise (30% of pulse amplitude with
100–600-MHz frequency range) is added to the previously
described model (Fig. 4). Such low-frequency noise, typical
of many GPR data sets, is much more challenging to remove
than high-frequency noise. We find that with the selection of

Fig. 5. Results from the deconvolution of the noisier synthetic data shown
in Fig. 4. (Top) True, initial, and final estimated wavelets using the same
split Bregman parameters α = 0.5 and β = 1, which were used in the lower
noise case in Fig. 2. (Bottom) Estimated reflectivity model of the cylinders.
Random spikes caused by the low-frequency noise could make it challenging
to identify the hyperbolic reflector.

α = 0.5 and β = 1, the SBD fails to remove much of the
noise and the reconstructed reflectivity model clearly suffers
(Fig. 5). Here, the location and the shape of the hyperbolic
reflectors are well recovered, but the reflectivity model could
be difficult to interpret against the background noise. The
estimated wavelet also suffers from the noise, especially at
the tail of the pulse, where the amplitude fails to converge
rapidly to zero (orange dashed pulse in Fig. 5).

To do a better job at reducing the low-frequency noise,
a range of the split Bregman tradeoff parameters were tested.
We find that for GPR data with high levels of low-frequency
noise, α = 0.01 to 0.001 and β = 0.5 are more successful in
noise reduction and optimal reflectivity and wavelet recovery.
Fig. 6 is obtained with α = 0.001 and β = 0.5 (α = 0.01
produces almost the same results). Comparison of Figs. 5 and 6
clearly illustrates the importance of the selection of the split
Bregman tradeoff parameters. The shape of the estimated
wavelet in both cases is generally similar, but the estimated
source wavelet in Fig. 6 is much closer to the true wavelet,
especially in the tail. Some sparse random reflectors remain in
the model, presumably due to the similarity between the noise
and the pulse frequencies at those locations.

C. Real Data

A Mala ProEX system with an 800-MHz shielded antenna
pair was used to gather a common-offset profile over an
8-cm-diameter metallic pipe buried in the sand (at distance
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Fig. 6. (Top) True, initial, and estimated wavelets as given in Fig. 5, but
with split Bregman tradeoff parameters α = 0.001 and β = 0.5. (Bottom)
Estimated reflectivity model of the cylinders is much less noisy, compared to
Fig. 5.

Fig. 7. GPR transect over a metallic pipe (0.75 m along profile) and tree
roots (2.1 and 3.0 m) in sand. A low-pass (2 GHz) filter has been applied to
reduce high-frequency noise. The direct wave arrival has been cropped from
the top of the time axis. No gains are applied. Black boxes contain trace
segments used in the initial wavelet calculation.

approximately 0.75 m along the GPR profile shown in Fig. 7).
Two other distinctive hyperbolic patterns are seen in the
data; these are created by tree roots. High-frequency noise is
removed from the data by a simple low-pass filter removing
frequencies greater than 2 GHz. Soil heterogeneities generate
additional radar returns, especially visible around 6-ns
two-way travel time.

Similar to the synthetic models, a background removal is
applied and the computation of the initial wavelet does not

Fig. 8. (Top) Initial and final estimated wavelets for the data set shown
in Fig. 7 with α = 0.5 and β = 1. (Bottom) Corresponding estimated
reflectivity model. The reflectivity image contains more complexity than
desired.

use the direct wave (before 4 ns, not shown). This is because
the direct wave varies along the transect due to variations in
soil moisture, surface roughness, and antenna-ground coupling
(Fig. 7). This first arrival also falls in the near field of the
antenna, and compensation for near-field effects is beyond the
scope of this paper (in such settings, it would likely be more
effective to estimate the optimum wavelet and reflectivities
for each individual transmitter location separately, rather than
estimating one best-fit wavelet for the whole data set, a topic
also beyond the scope of this paper).

The initial wavelet is calculated by time shifting, stacking,
and finally normalizing a few traces around the apex of each
hyperbolic event shown in boxes in Fig. 7 (similar to the
synthetic case). As for the “noisier” synthetic case, selection
of the split Bregman parameters strongly influences results.
Comparing Figs. 8 and 9, setting α = 0.001 and β = 0.5
reduces the number of estimated reflectors (α = 0.01 provided
almost the same reflectivity and wavelet model as α = 0.001.)
In this latter case (Fig. 9), the hyperbolic shapes of the pipe and
roots reflectors are recovered well with fewer reflectors placed
earlier than 6 ns and later than the hyperbola arrivals. We stress
that in this particular case, recovering the reflectivity model
of cylindrical objects was the desired target, rather than soil
heterogeneity. The overall shape of the source wavelet recov-
ered with both parameter selections is similar (Figs. 8 and 9),
but the latter model yields fewer noncylindrical target reflec-
tors. We find that limiting the source wavelet length to just
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Fig. 9. (Top) Initial and final estimated wavelets for the data set shown
in Fig. 7 with α = 0.001 and β = 0.5 (α = 0.01 provides very similar
models). (Bottom) Corresponding estimated reflectivity model. The additional
peak in the early part of the wavelet allows parts of the complexity in the
data to be shifted from the reflectivity series to the wavelet.

Fig. 10. Wiener deconvolution reflectivity series for the real data in Fig. 7.
The signature of the source wavelet is reduced but the reflectivity series still
shows the residual wavelet, i.e., the difference between the actual wavelet and
its minimum phase equivalent.

the main cycle (i.e., <4 ns length) generates an undesirable
train of hyperbolas in the estimated reflectivity model.

Finally, we compare the performance of the SBD algorithm
(Fig. 9) with Wiener deconvolution (Fig. 10). Wiener decon-
volution assumes that the wavelet has minimum phase and that
the reflectivity series is white noise. These assumptions are not
satisfied in real-world GPR data, and as a result, the Wiener
deconvolution is less effective at removing the effect of the

wavelet from the data. Although the recovered reflectivity
series (Fig. 10) shows more focused events than the original
data (Fig. 7), the series is smooth and lacks the high-resolution
features present in the SBD reflectivity series (Fig. 9).

V. CONCLUSION

The proposed SBD method is tested on synthetic and simple
field GPR data. The method estimates the reflectivity model
of the subsurface and the transmitted pulse shape efficiently
and simultaneously without requiring any prior information
from the subsurface or any assumption about the phase of
the wavelet. The initial source wavelet estimate is made by
extracting and averaging a subset of the data. The process then
iteratively updates the reflectivity model and source wavelet.
The method is tested on data sets with cylindrical targets and
different noise levels. High-frequency noise alone is handled
with the split Bregman algorithm parameters α = 0.5 and
β = 1, while scenarios with more low-frequency noise and
a complex pulse are better treated with α = 0.01 to 0.001
and β = 0.5. The hyperbolic shapes of the recorded signals
are well recovered in the reflectivity models. In the synthetic
models, the initial wavelet estimate is improved upon, and the
final wavelet estimate is a good fit to the true wavelet.

For GPR studies, SBD can be useful for image resolution
enhancement and better understanding of the source wavelet.
Both the estimated source wavelet and reflectivity model can
be used in further advanced modeling procedures such as FWI.
Compensation for near-field signal propagation effects is a
subject of future research.
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