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Summary

A statistical analytical monitoring scheme is developed that utilizes maximum
energy of ground-penetrating radar signals to detect hidden buried objects
and estimate their location and depth automatically. The maximum energy is
calculated for locations by Welch's power spectral density estimation. Using
the proposed analytic, the maximum energy is tightly monitored for a sig-
nificant change from reference signals generated using target-free locations.
A warning message is triggered when monitoring process detects a site with
potential buried objects, on average, 90 cm (2.95 ft) away from the object
for 800-MHz antenna. Continuing the ground-penetrating radar scan in the
same direction and monitoring the signals, the procedure uses a sophisticated
hyperbola-mapping method to estimate the location and depth of buried objects
with high accuracy. The analytics could successfully pinpoint the location and
depth of hidden objects, respectively, with mean absolute error of 0.38 and
2.03 cm in synthetic noisy environments. Reliable performance of the proposed
analytics in real cases that run in real-time for multiple object detection even in
noisy media proves its efficiency for real-life exploration.
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1 INTRODUCTION

Ground-penetrating radar (GPR) is very popular in the field of engineering for exploratory purposes due to its non-
destructive utilization and fast data collection.1,2 Manual processing of the accumulated data is time-consuming and
requires experience. Besides, in many applications, for example, detecting rebar reinforcement in foundation construc-
tion, locating utilities, and detecting land mines and unexploded ordinance, abundance of possible targets could be extra
challenging. To date, there have been various approaches aiming to automatize the object detection procedure. Wavelet
transform,3,4 Hough transform,5-7 and Radon transform8 are popular techniques among electrical engineering scholars.

Machine-learning techniques utilized by researchers in computer engineering are great assets in automatizing the
object detection task. Neural networks and image processing-based pattern recognition methods are reported to be
useful,9-11 but they are sensitive to noise and fail to perform adequately in the presence of incomplete or highly disturbed
hyperbolic patterns. Recently, Dou et al.12 have proposed a column-connection-clustering algorithm to identify hyper-
bolic signatures, which again is successful if sharp and strong reflected signals are recorded. The reader is referred to Dou
et al.12 for a complete list of previously studied approaches.
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Most recently, Jazayeri et al.13 have proposed a statistical approach that measures dissimilarity of GPR signals to sig-
nals from target-free locations using dynamic time warping to detect burial sites. A hyperbola mapping is conducted on
potential burial sites, which leads to highly accurate location, velocity, and depth estimation. Their method is proven to
be reliable after testing with various synthetic and real-life data.

In this article, another statistical approach is introduced that is based on the fundamental idea of a signals's energy.
The proposed method that runs automatically warns the user of potential burial sites by monitoring the energy of GPR
signals. It performs automatic hyperbola mapping, location, velocity, and depth estimation with high accuracy. Moreover,
the analytics run fast and are robust to low levels of noise, which make them suitable for on-site utilization. Considerable
number of synthetic models are investigated using the proposed method as well as real data with striking results.

2 MATERIALS

To statistically evaluate performance of the proposed method, 20 cases of synthetic models are generated in three scenar-
ios. Scenario 1, with no buried object but signals, includes an additive noise and random outliers. Scenario 2, where a
water-filled PVC pipe with wall thickness of 3 mm and inner diameter of 10 cm is buried in sand, in a random location
and depth. Signals are free from noise and outliers in this scenario. In Scenario 3, additive noise is added to the cases
in Scenario 2 to imitate more realistic models. The additive noise is considered to be a combination of white noise with
Gaussian distribution, signal-to-noise ratio of 25 dB, and random outliers.14,15 These 2D synthetic models are created using
the finite difference–time domain gprMax code.16,17 All materials are considered to be homogeneous (see Table 1). The
transmitted pulse is an 800-MHz ricker, with the antenna offset of 14 cm and the trace interval of 2.5 cm.

In addition, to assess the performance of the proposed analytics in real life, two cases of real data are investigated. First,
a data set was collected over a sand test site where multiple buried pipes and tree roots existed. A MALA ProEx GPR
system with 800-MHz–shielded antenna was used to probe the ground where two PVC pipes with wall thickness of 3 mm
and radius of 4.1 cm were buried in sand, 35 cm below the surface at 1.2 and 5.2 m. Beside the pipes, there were two
pieces of tree roots at 7.8 and 9.1 m all with hyperbolic responses. Second, a portion of a long GPR profile collected on a
road using the same system is utilized that illustrates a real complex environment. The study area is part of a main road
covered with asphalt, embracing different utilities and drainage channels. All the synthetic and real data are available on
the first author's website.

3 METHODS

Power spectral density (PSD) of a signal refers to its spectral energy distribution as a function of frequency. The PSD has
been used to diagnose faults in hydraulic pumps and electromotors,18,19 to evaluate damage in concrete,20 and to monitor
machine conditions,21 among others. When searching for hidden underground objects using GPR, the recorded signal is
expected to be stronger in energy by approaching a buried object. This is because more signal waves are reflected to the
receiver when they hit underground objects. Thus, it is logical that the energy of GPR signals change depending on the
distance from buried objects. This idea in fact is used in this article to detect multiple buried objects. Figure 1 shows how
a reference signal generated from a target-free location and a signal from a location directly above a buried object are
different and how this affects their power spectral density estimate.

The Welch method is used in this article to estimate the PSD.22,23 The general procedure behind Welch method is first
to segment a signal x = (x1, ...xT) of length T into K-overlapped segments of size M. For each segment, then compute a
windowed discrete Fourier transform at some frequency 𝜈 = j∕M with −(M∕2 − 1) ≤ j ≤ M∕2:

Xk(v) =
∑

m
x(m)w(m) exp(−𝑗2𝜋𝜈m), m = (k − 1)S, … ,M + (k − 1)S − 1, (1)

TABLE 1 Material properties

Media Relative permittivity Electrical conductivity (mS/m)

Soil 5 1
PVC pipe 3 1
Water 80 1



SAGHAFI ET AL. 3 of 10

FIGURE 1 (a) Sample of a reference signal and a signal above buried object. (b) Welch power spectral density estimate

where S is the number of points to shift between segments and w(m) is the Hamming window function. Next, compute
the modified periodogram value from the discrete Fourier transform for each segment:

Pk(𝜈) =
1

W
|Xk(𝜈)|2, k = 1, ..,K, (2)

where W =
∑M

m=1 w2(m). Welch's estimate of the PSD is then obtained by averaging the periodogram values:

Sx(𝜈) =
1
K

K∑
k=1

Pk(𝜈). (3)

Figure 2 shows maximum PSD of Case no. 6 in the three discussed experimental scenarios along with their GPR profiles.
Obviously, existence of a buried object is detectable using the maximum PSD because there is an increasing pattern to its
values by approaching the object. The maximum energy of signals from target-free locations has a constant value with
minor deviations due to noise. PSD is powerful to cancel out noise within the signal, see how results from Scenarios 2
and 3 have the same pattern with some deviations.

The general procedure to detect hidden buried objects using PSD is described below.

(a) Three target-free locations are scanned, and their GPR signal is recorded. These three signals serve as the initial
reference signals for the current under investigation site.

(b) Proceed by scanning target areas and computing the maximum energy of the new locations using (3). The more
similar the signals are to the reference signal, the closer their energy is. This also means that the ground is object
free up to some fair distance.
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FIGURE 2 (a) Ground-penetrating radar profiles. (b) Maximum power spectral density for Case no. 6 in the three experimental scenarios

(c) By getting closer to a site with buried object(s), the max PSD value increases gradually. The potential burial site is
close to where a peak of the max PSD happens. A more thorough investigation of neighboring locations uncovers a
hyperbola signature, which is the key to location and depth estimation of the buried object(s).

In the next section, an explicit statistical approach is introduced to detect a buried object when approaching it while
controlling the detection failure. The procedure is an online sequential control process that monitors GPR signals
as they are being recorded. Repeating the same procedure on all local max PSD values is the key to multiple object
detection.

4 THEORY/CALCULATION

Suppose xn =
(

x1
n, x2

n, … , xT
n
)

is the nth-recorded signal using GPR where x1, x2, and x3 are recorded from target-free
locations. Assume pn is the max PSD of the nth-recorded signal computed using (3). Let p̄4

n represents the window average
of the last four max PSD values given by

p̄4
n = 1

4

n∑
i=n−3

pi, (4)
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and let p̄25
n represents the window average of the last 25 max PSD values given by

p̄25
n = 1

25

n∑
i=n−24

pi, (5)

where the average of 25 is computed for the available values in the beginning of the process and is shown by p̄n
n.

Theorem: As soon as the nth signal is recorded, the following decision boundary detects underground objects with
probability of 0.999 for n ≥ 25:

p̄4
n > p̄25

n + u25
n , (6)

where
u25

n = t(24,0.999)s25
n

( 21
252

)(
1 + 21

42

)
. (7)

For 4 ≤ n ≤ 24, the following boundary detects underground objects with the same probability:

p̄4
n > p̄n

n + un
n, (8)

where
un

n = t(n−1,0.999)sn
n

(n − 4
n2

)(
1 + n − 4

n2

)
. (9)

The proof of the theorem is given in Appendix. The computational steps to use this theorem are as follows:

1. As soon as xn (n ≥ 4) is recorded, its maximum PSD is computed along with the window average of four
(

p̄4
n
)

and
the window average of 25 (p̄25

n or p̄n
n when applicable).

2. A one-sided t-student confidence interval (0, p̄25
n + u25

n ) is generated using (7). When there are less than 25
observations, this interval is computed as (0, p̄n

n + un
n) using (9).

3. If p̄4
n ≤ p̄25

n + u25
n (or p̄4

n ≤ p̄n
n + un

n when applicable), then process is under control, and the chance of failure in
detection is 0.001. Otherwise, a warning is issued, and an object underground is detected ahead. In this case, the
average p̄4

n keeps increasing by approaching the buried object.
4. Scanning and monitoring target areas continue after a local peak of p̄4

n is achieved. This peak happens around a
highly probable burial site, xn (a ≤ n ≤ b).

5. A hyperbola is tracked and mapped for signals of the probable burial site through analytic searching. The location
of the buried object is estimated where the apex of the hyperbola happens.

6. A least-square approach is used to approximate the velocity using the marked nodes on the diffracted hyperbola
in Step 5. Then, the one-way travel time of the wave at the estimated location of the target is multiplied by the
velocity to estimate the depth. A zero-time correction is applied beforehand where the zero time is estimated using
the potential burial site signals.

7. The process is repeated for all the local peaks of p̄4 for detecting multiple objects.

5 RESULTS

Figure 3 shows the decision process using the proposed approach for Case no. 6 in the three discussed scenarios. In Sce-
nario 1, where there was nothing underground, the confidence limit has some fluctuations. There are a few observations
outside the confidence limit due to noise, which trigger a warning, but, overall, the change in max PSD is insignificant
and does not create a significant peak of max PSD values. In Scenario 2, however, the confidence limit increases due to
significant increase of signal's energy. Here, a warning alarm is generated at x = 0.820, the location and depth of the
buried object are estimated to be 1.62 and 0.224 m, respectively. True location of the object was 1.62 m and 0.23 m under-
ground. Scenario 3 generates roughly the same graph as Scenario 2 because PSD approach handles the additive noise quite
well. An alarm is generated at x = 0.395, and the location and depth of the object are estimated to be 1.62 and 0.223 m,
respectively.

Table 2 represents the overall performance of the 20 experimental cases in Scenarios 2 and 3. All 20 cases of Scenario 1
successfully generated a “nothing detected” notification whereas all cases in Scenarios 2 and 3 detected a hidden object.
For cases in Scenario 2, a detection alarm generated at least 90 cm prior to reaching the object, on average. The mean
absolute error (MAE) and root-mean-square error (RMSE) for location were 0.47 and 0.73 cm, respectively, meaning that
on average, the error in estimating lateral location was 0.47 cm. The RMSE is a goodness of fit measure that includes both
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FIGURE 3 Maximum power spectral density control process for Case no. 6 in the three experimental scenarios: (a) Scenario 1, (b)
Scenario 2, (c) Scenario 3

the estimation bias and variance. The depth in this scenario estimated with MAE of 1.80 and RMSE of 2.30 cm. For cases
in Scenario 3, a detection alarm issued at least 94 cm ahead where the object was buried. The MAE and RMSE for location
estimation were 0.375 and 0.602 cm, respectively. Depth estimation had a MAE of 2.027 cm and an RMSE of 2.837 cm.
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TABLE 2 Mean absolute error (cm) and root-mean-square
error (cm) of the max power spectral density analytics in 20
simulated cases for two scenarios

Location Depth
Scenario Detection MAE RMSE MAE RMSE

Scenario 2 89.975 0.474 0.725 1.797 2.299
Scenario 3 93.975 0.375 0.602 2.027 2.837

Note. MAE: mean absolute error; RMSE: root-mean-square error.

FIGURE 4 (a) Ground-penetrating radar profile collected over Geopark pipe site. (b) Smoothed max power spectral density values with
warning and estimated locations

As expected, the proposed analytics performed quite well in real-life data with multiple buried objects. Figure 4 shows
the profiles of the real data collected on pipes in sandy media and the smoothed max PSD values. The smoothing has been
carried on using a moving average of 21 that was set by experimenting on the synthetic data. The location of the objects
estimated to be x = 1.216, 5.201, 7.761, 9.065 m with corresponding depth of 0.353, 0.282, 0.387, and 0.430 m.

Figure 5 shows the GPR profile and smoothed max PSD values along with the generated warning and estimated loca-
tions for the second real data. The location and depth of the first object estimated to be 2.007 and 0.541 m, respectively. The
second object estimated to be at 5.465 and 0.779 m underground. Performance of the analytics in this multiple object case
is remarkable considering the level of distortion and noise in the data. To our experience, alternate detection methods12

fail to detect the objects in this real case data due to severe existing distortions in the GPR signal. However, the proposed
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FIGURE 5 (a) Ground-penetrating radar profile collected on asphalt. (b) Smoothed max power spectral density values with warning and
estimated locations

method successfully detects the objects and performs valid depth estimation using imperfect hyperbolic signatures. The
exact locations and depths in this real experiment are unknown, but the results match expert expectations. There is a
high sharp peak at 4.90 m in the smoothed max PSD plot that could be a result of mixed energies of two densely spaced
anomalies. In this case, the analytics pick on the local max of the smoothed PSD values happening around 4.90 and track
the trace of the hyperbola using a custom window search to reach its peak at 5.41 m. Three warnings are generated by the
analytics at 1.29, 4.17, and 4.67 m, but hyperbola fitting results for the last two warnings converged, and one object was
reported back.

Statistical measures such as MAE and RMSE computed over many samples are presented in this article that validate the
reliability of the estimations. The main performance measure reported by other articles is the detection accuracy, which is
calculated as the percent of correct object detections. To that extent, the proposed method in this paper had 100% success
in detecting the subsurface anomalies in all cases of synthetic and real data used in this research. To our knowledge, the
recent approach by Dou et al12 fails to locate the drainage channel at 5.5 m whereas our analytics perform valid location
and depth estimation beside the detection.

6 CONCLUSIONS AND DISCUSSION

In this study, a statistical analytical monitoring scheme is proposed that utilizes maximum energy of GPR signals to detect
multiple hidden buried objects and estimate their location as well as their depth. The computations run instantly and
could be performed in real time. The synthetic and real data used in this article are accessible via the first author's personal
home page*.

*AbolfazlSaghafi.info
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An alarm is set to warn the user when a potential burial site is detected ahead by setting a threshold on the max PSD
values. The site could be detected at least 44 cm ahead on average, and the threshold was set using t-student distribution.
Sensitivity of the alarm process could be changed by changing the threshold.

A window average of four max PSDs for checking in/out of control states is utilized because four samples cut the length
of the interval in half. The next window size that has significant effect on the length is nine, which is too much to consider.
A window average of 25 max PSDs has been used to create confidence limits by considering the central limit theorem
and approximate t distribution for the average. We are currently working on developing the analytics to detect multiple
objects buried more closely.
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APPENDIX A : PROOF OF THEOREM

The proof is provided for n ≥ 25; steps are similar for 4 ≤ n ≤ 24. Under the hypothesis that there is nothing
underground, the window average of 25 and four has the same expected value, that is,

E
(

P̄4
n
)
= 𝜇4 = 𝜇25 = E

(
P̄25

n
)
.

However, by approaching target locations, the window average of four increases promptly whereas the window average
of 25 increases gradually. To detect this change as quickly as possible, we are testing the following statistical hypothesis
at each step of the process:

H0 ∶ 𝜇4 = 𝜇25 Vs H1 ∶ 𝜇4 > 𝜇25,

where 𝜇4 is the true mean of the window average of four max PSD values and 𝜇25 is the mean of the window average of
25 max PSD. The test statistic is (P̄4

n − P̄25
n ), which is unbiased under null hypothesis:

E
(

P̄4
n − P̄25

n
)
= 0,

and has the following variance
Var

(
P̄4

n − P̄25
n
)
= 𝜎2

( 21
252

)(
1 + 21

42

)
,

where Var
(

P̄n
n
)
= 𝜎2∕n. Thus, using central limit theorem, one has(

P̄4
n − P̄25

n
)

𝜎2
(

21
252

)(
1 + 21

42

) ≈ N(0, 1).

By estimating 𝜎2 using the last 25 observations, we have(
P̄4

n − P̄25
n
)

s25
n

(
21
252

)(
1 + 21

42

) ≈ t(n−1),

where

s25
n =

√√√√ 1
24

n∑
i=n−24

(
pi − p̄25

n
)2
.

Thus, using a t-distribution confidence interval, when an object is buried underground, we have
(

p̄4
n − p̄25

n
)
> u25

n , where

u25
n = t(24,0.999)s25

n

( 21
252

)(
1 + 21

42

)
.

As long as
(

p̄4
n − p̄25

n
)
≤ u25

n , the process is under control, and the probability of not detecting a change equals 0.001, which
is related to the selected t-distribution critical value.
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